Package ‘woeBinning’

October 12, 2022
Type Package

Title Supervised Weight of Evidence Binning of Numeric Variables and
Factors

Version 0.1.6

Date 2018-07-10

Author Thilo Eichenberg

Maintainer Thilo Eichenberg <te.r@gmx.net>

Description Implements an automated binning of numeric variables and factors with
respect to a dichotomous target variable.
Two approaches are provided: An implementation of fine and coarse classing that
merges granular classes and levels step by step. And a tree-like approach that
iteratively segments the initial bins via binary splits. Both procedures merge,
respectively split, bins based on similar weight of evidence (WOE) values and
stop via an information value (IV) based criteria.
The package can be used with single variables or an entire data frame. It provides
flexible tools for exploring different binning solutions and for deploying them to
(new) data.

License GPL (>=2)

LazyData TRUE

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-28 16:40:02 UTC

R topics documented:

germancredit L e
woe.binning
woe.binning.deploy
woe.binning.plot L e
woe.binning.tableo oL
woe.tree.binningo L. e e e e
woeBinning

2 woe.binning

Index 14

germancredit German Credit Data

Description
Credit data that classifies debtors described by a set of attributes as good or bad credit risks. See
source link below for detailed information.

Usage

data(germancredit)

Format

A data frame with 21 variables (numeric and factors) and 1000 observations.

Source

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

Examples

Load German credit data and create subset

data(germancredit)
df <- germancredit[, c('creditability', 'credit.amount', 'duration.in.month',
'savings.account.and.bonds', 'purpose')]
Display structure of the subset (data frame)
str(df)
woe.binning Binning via Fine and Coarse Classing
Description

woe.binning generates a supervised fine and coarse classing of numeric variables and factors with
respect to a dichotomous target variable. Its parameters provide flexibility in finding a binning that
fits specific data characteristics and practical needs.

Usage

woe.binning(df, target.var, pred.var, min.perc.total,
min.perc.class, stop.limit, abbrev.fact.levels, event.class)

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

woe.binning

Arguments

df

target.var

pred.var

min.perc.total

min.perc.class

stop.limit

Name of data frame with input data.

Name of dichotomous target variable in quotes. Only target variables with two
distinct values (e.g. 0, 1 or “Y”, “N”) are accepted; cases with NAs in the target
variable will be ignored.

Name of predictor variable(s) to be binned in quotes. A single variable name can
be provided, e.g. “varnamel”, or a list of variable names, e.g. c(“varnamel”,
“varname2”). Alternatively one can repeat the name of the input data frame; the
function will be applied to all its variables apart from the target variable then.
Numeric variables and factors are supported and may contain NAs.

For numeric variables this parameter defines the number of initial classes before
any merging is applied. For example min.perc.total=0.05 (5%) will result in
20 initial classes. For factors the original levels with a percentage below this
limit are collected in a ‘miscellaneous’ level before the merging based on the
min.perc.class and on the WOE starts. Increasing the min.perc.total parameter
will avoid sparse bins. Accepted range: 0.0001-0.2; default: 0.05.

If a column percentage of one of the target classes within a bin is below this
limit (e.g. below 0.01=1%) then the respective bin will be joined with others.
In case of numeric variables adjacent predictor classes are merged. For factors
respective levels (including sparse NAs) are assigned to a ‘miscellaneous’ level.
Setting min.perc.class>0 may provide more reliable WOE values. Accepted
range: 0-0.2; default: 0, i.e. no merging with respect to sparse target classes is
applied.

Stops WOE based merging of the predictor’s classes/levels in case the result-
ing information value (IV) decreases more than x% (e.g. 0.05 = 5%) compared
to the preceding binning step. stop.limit=0 will skip any WOE based merg-
ing. Increasing the stop.limit will simplify the binning solution and may avoid
overfitting. Accepted range: 0-0.5; default: 0.1.

abbrev.fact.levels

event.class

Value

Abbreviates the names of new (merged) factor levels via the base R abbreviate
function in case the specified number of characters is exceeded. Accepted range:
0-1000; default: 200. 0 will prevent applying any abbreviation, i.e. only fac-
tor levels with more than 1000 characters will be truncated then. This option
is particularly relevant in case one wants to generate dummy variables via the
woe.binning.deploy function, because the factor levels will be part of the
dummy variable names then.

Optional parameter for specifying the class of the target event. This class typ-
ically indicates a negative event like a loan default or a disease. Use integers
(e.g. 1) or characters in quotes (e.g. “bad”). This class will be represented by
negative WOE values then.

woe.binning generates an object containing the information necessary for studying and applying
the realized binning solution. When saved it can be used with the functions woe.binning.plot,
woe.binning. table and woe.binning.deploy.

4 woe.binning

Binning of Numeric Variables

Numeric variables (continuous and ordinal) are binned by merging initial classes with similar fre-
quencies. The number of initial bins results from the min.perc.total parameter: min.perc.total will
result in trunc(1/min.perc.total) initial bins, whereby trunc is needed to guarantee bins with similar
frequencies. For example min.perc.total=0.07 will cause trunc(14.3)=14 initial classes. Next, if
min.perc.class>0, bins with sparse target classes will be merged with the next upper bin, and in
case of the last bin with the next lower one. NAs have their own bin and will not be merged with
others. Finally nearby bins with most similar weight of evidence (WOE) values are joined step by
step until the information value (IV) decreases more than specified by a percentage value (stop.limit
parameter) or until two bins are reached.

Binning of Factors

Factors (categorical variables) are binned by merging factor levels. As a start sparse levels (defined
via the min.perc.total and min.perc.class parameters) are merged to a ‘miscellaneous’ level: if pos-
sible, respective levels (including sparse NAs) are bundled as ‘misc. level pos.” (associated with
positive WOE values), respectively as ‘misc. level neg.’ (associated with negative WOE values).
In case a misc. level contains only NAs it will be named ‘Missing’. Afterwards levels with similar
WOE values are joined step by step until the information value (IV) decreases more than specified
by a percentage value (stop.limit parameter) or until two bins are reached.

Adjustment of 0 Frequencies

In case the crosstab of the bins with the target classes contains frequencies = O the column per-
centages are adjusted to be able to compute the WOE and IV values: the offset 0.0001 (=0.01%)
is added to each column percentage cell and the column percentages are recomputed then. This
allows considering bins associated with one target class only, but may cause extreme WOE values
for these bins. If a correction is not appropriate choose min.perc.class>0; bins with sparse target
classes will be merged then before computing any WOE or IV value.

Handling of Missing Data

Cases with NAs in the target variable will be ignored. For predictor variables the following applies:
in case NAs already occurred when generating the binning solution the code ‘Missing’ is displayed
and a corresponding WOE value can be computed. (Note that factor NAs may be joined with
other sparse levels to a ‘miscellaneous’ level - see above; only this ‘miscellaneous’ level will be
displayed then.) In case NAs occur in the deployment scenario only ‘Missing’ is displayed for
numeric variables and ‘unknown’ for factors; and the corresponding WOE values will be NA then,
as well.

See Also

Other binning functions: woe.tree.binning

Examples

Load German credit data and create subset
data(germancredit)
df <- germancredit[, c('creditability', 'credit.amount', 'duration.in.month',

woe.binning.deploy 5

'savings.account.and.bonds', 'purpose')]

Bin a single numeric variable

binning <- woe.binning(df, 'creditability', 'duration.in.month',
min.perc.total=0.05, min.perc.class=0.01,
stop.limit=0.1, event.class='bad')

Bin a single factor

binning <- woe.binning(df, 'creditability', 'purpose',
min.perc.total=0.05, min.perc.class=0, stop.limit=0.1,
abbrev.fact.levels=50, event.class='bad')

Bin two variables (one numeric and one factor)
with default parameter settings
binning <- woe.binning(df, 'creditability', c('credit.amount', 'purpose'))

Bin all variables of the data frame (apart from the target variable)
with default parameter settings
binning <- woe.binning(df, 'creditability', df)

woe.binning.deploy Deployment of Binning

Description
woe.binning.deploy applies the binning solution generated and saved via the woe.binning or
woe. tree.binning function to (new) data.

Usage

woe.binning.deploy(df, binning, min.iv.total, add.woe.or.dum.var)

Arguments
df Name of the data frame the binning solution - that was generated via the function
woe.binning or woe. tree.binning - should be applied to. The variable names
and types (numerical or factor) need to be identical to the ones used during the
generation of the binning solution.
binning Binning information generated from the woe.binning or woe.tree.binning

function. Contains names of the input predictor variables and the corresponding
binning, WOE and IV information, which is used to add a binned variable to a
copy of the input data.

min.iv.total If the IV total value of a binned variable falls below this limit (e.g. 0.1) it will
not be added to the data. Just omit this parameter in case you would like to add
all binned variables (default).

woe.binning.deploy

add.woe.or.dum.var

General Procedure

add.woe.or.dum.var=“woe” adds an additional variable with WOE scores and
=“dum” additional dummy variables for each (aggregated) level of the binned
variable. In case of dummy variables make sure that you have set an appro-
priate abbrev.fact.levels parameter in the woe.binning or woe.tree.binning
function to avoid too long variable names. In principle, only alphanumeric char-
acters and dots (.) will be used for variable names. Just omit this parameter in
case you don’t need additional variables.

woe.binning.deploy applies the binning information that was generated from the woe.binning
or woe. tree.binning function to a data frame. In this data frame the names of the variables to be
binned need to be identical to the ones used with the woe.binning or woe. tree.binning function.
For each variable a binned version will be added. Optionally a variable with associated weight of
evidence (WOE) values or corresponding dummy variables (one dummy variable for each final bin)

are provided.

Handling of Missing Data

In case NAs already occurred during the woe.binning or woe. tree.binning binning process the
code ‘Missing’ is displayed and a corresponding WOE value can be computed. In case NAs only
occur in the deployment scenario ‘Missing’ is displayed for numeric variables and ‘unknown’ for
factors; and the corresponding WOE values will be NAs then, as well.

Handling of Unknown Factor Levels

For factor levels that have not been provided in generating the binning solution via the woe.binning
or woe. tree.binning function a new factor level ‘unknown’ is displayed and the corresponding
WOE value will be NA.

Examples

Load German credit data and create a subset
data(germancredit)
df <- germancredit[, c('creditability', 'credit.amount', 'duration.in.month',

'savings.account.and.bonds', 'purpose')]

Bin all variables of the data frame (apart from the target variable)
with default parameter settings
binning <- woe.binning(df, 'creditability', df)

Deploy the binning solution to the data frame
(add all binned variables and corresponding WOE variables)
df.with.binned.vars.added <- woe.binning.deploy(df, binning,

add.woe.or.dum.var="'woe")

Deploy the binning solution to the data frame
(add binned variables with IV>=0.1 and corresponding dummy variables)
df.with.binned.vars.added <- woe.binning.deploy(df, binning,

min.iv.total=0.1,

woe.binning.plot

add.woe.or.dum.var="dum")

woe.binning.plot

Visualization of Binning

Description

woe.binning.plot visualizes the binning solution generated and saved via the woe.binning or
woe. tree.binning function.

Usage

woe.binning.plot(binning, multiple.plots, plot.range)

Arguments

binning

multiple.plots

plot.range

Details

Binning information generated from the woe.binning or woe.tree.binning
function. Contains names of the input predictor variables and the corresponding
binning, WOE and IV information, which is used to generate the WOE and IV
plots.

In case the binning solution contains several predictor variables they will be
visualized via multiple plots (max. four WOE plots per graph window). Use
multiple.plots=FALSE to avoid this and to display single plots in separate win-
dows.

Range of variables that should be plotted in quotes. For example “1:10” will
generate WOE plots and one IV plot for the ten variables with the highest IV
values, “11:20” for the next ten variables and so on. Just omit this parameter to
visualize all binned variables (default).

For each predictor variable woe.binning.plot generates a weight of evidence (WOE) plot. In case
of multiple predictors an additional plot with variables ranked via the information value (IV) will

be displayed.

Examples

Load German credit data
data(germancredit)
df <- germancredit

Bin all variables of the data frame (apart from the target variable)
with default parameter settings
binning <- woe.binning(df, 'creditability', df)

Plot all binned variables as multiple plots
woe.binning.plot(binning)

8 woe.binning.table

Plot only the first four binned variables with the highest IV value
as multiple plots
woe.binning.plot(binning, plot.range='1:4")

Plot the binned variables in single plots
woe.binning.plot(binning, multiple.plots=FALSE)

woe.binning.table Tabulation of Binning

Description
woe.binning.table tabulates the binning solution generated and saved via the woe.binning or
woe. tree.binning function.

Usage

woe.binning.table(binning)

Arguments
binning Binning information generated from the woe.binning or woe.tree.binning
function. Contains names of the input predictor variables and the corresponding
binning, counts, WOE and IV information, which is used to generate the tables.
Details

For each predictor variable woe.binning. table generates a table (data frame). This table contains
the final bin labels, total counts, total distribution (column percentages), counts for the first and the
second target class, distribution of the first and the second target class (column percentages), rate
(row percentages) of the target event specified via the event.class parameter in the woe.binning or
woe. tree.binning function, as well as weight of evidence (WOE) and information values (IV).

Examples

Load German credit data and create a subset

data(germancredit)

df <- germancredit[, c('creditability', 'credit.amount', 'duration.in.month',
'savings.account.and.bonds', 'purpose')]

Bin all variables of the data frame (apart from the target variable)
with default parameter settings
binning <- woe.binning(df, 'creditability', df)

Tabulate the binned variables
tabulate.binning <- woe.binning.table(binning)
tabulate.binning

woe.tree.binning 9

Not run:

Plot a layouted table (using the gridExtra library) for a specific

variable (in this example for the first binned variable

with the highest IV value)

library(gridextra)

grid.table(tabulate.binning[[11],

theme = ttheme_default(core=list(bg_params=

list(fill=c(rep(c('grey95', 'grey9e"'),
length.out=nrow(tabulate.binning[[1]11)-1),
'#BCC7BD"')),fg_params=1list(cex=0.8)),
colhead=1list(fg_params=1list(cex=0.8))),
rows=NULL)

End(Not run)

woe.tree.binning Binning via Tree-Like Segmentation

Description

woe. tree.binning generates a supervised tree-like segmentation of numeric variables and factors
with respect to a dichotomous target variable. Its parameters provide flexibility in finding a binning
that fits specific data characteristics and practical needs.

Usage

woe.tree.binning(df, target.var, pred.var, min.perc.total,
min.perc.class, stop.limit, abbrev.fact.levels, event.class)

Arguments
df Name of data frame with input data.
target.var Name of dichotomous target variable in quotes. Only target variables with two
distinct values (e.g. 0, 1 or “Y”, “N”) are accepted; cases with NAs in the target
variable will be ignored.
pred.var Name of predictor variable(s) to be binned in quotes. A single variable name can

be provided, e.g. “varnamel”, or a list of variable names, e.g. c(“varnamel”,
“varname2”). Alternatively one can repeat the name of the input data frame; the
function will be applied to all its variables apart from the target variable then.
Numeric variables and factors are supported and may contain NAs.

min.perc.total For numeric variables this parameter defines the number of initial classes before
any merging or tree-like splitting is applied. For example min.perc.total=0.05
(5%) will result in 20 initial classes. For factors the original levels with a per-
centage below this limit are collected in a ‘miscellaneous’ level before the merg-
ing based on the min.perc.class and the tree-like splitting based on the WOE

10 woe.tree.binning

values starts. Increasing the min.perc.total parameter will avoid sparse bins.
Accepted range: 0.0001-0.2; default: 0.01.

min.perc.class If a column percentage of one of the target classes within a bin is below this
limit (e.g. below 0.01=1%) then the respective bin will be joined with others.
In case of numeric variables adjacent predictor classes are merged. For factors
respective levels (including sparse NAs) are assigned to a ‘miscellaneous’ level.
Setting min.perc.class>0 may provide more reliable WOE values. Accepted
range: 0-0.2; default: 0, i.e. no merging with respect to sparse target classes is
applied.

stop.limit Stops WOE based segmentation of the predictor’s classes/levels in case the re-
sulting information value (IV) increases less than x% (e.g. 0.05 = 5%) compared
to the preceding binning step. Increasing the stop.limit will simplify the binning
solution and may avoid overfitting. Accepted range: 0-0.5; default: 0.1.

abbrev.fact.levels
Abbreviates the names of new (merged) factor levels via the base R abbreviate
function in case the specified number of characters is exceeded. Accepted range:
0-1000; default: 200. O will prevent applying any abbreviation, i.e. only fac-
tor levels with more than 1000 characters will be truncated then. This option
is particularly relevant in case one wants to generate dummy variables via the
woe.binning.deploy function, because the factor levels will be part of the
dummy variable names then.

event.class Optional parameter for specifying the class of the target event. This class typ-
ically indicates a negative event like a loan default or a disease. Use integers
(e.g. 1) or characters in quotes (e.g. “bad”). This class will be represented by
negative WOE values then.

Value

woe. tree.binning generates an object with the information necessary for studying and applying
the realized binning solution. When saved it can be used with the functions woe.binning.plot,
woe.binning.table and woe.binning.deploy.

Binning of Numeric Variables

Numeric variables (continuous and ordinal) are binned beginning with initial classes with similar
frequencies. The number of initial bins results from the min.perc.total parameter: min.perc.total
will result in trunc(1/min.perc.total) initial bins, whereby trunc is needed to guarantee bins with
similar frequencies. For example min.perc.total=0.07 will cause trunc(14.3)=14 initial classes.
Next, if min.perc.class>0, bins with sparse target classes will be merged with the next upper bin,
and in case of the last bin with the next lower one. NAs have their own bin and will not be merged
with others. Finally the actual tree-like procedure starts: binary splits iteratively assign nearby
classes with similar weight of evidence (WOE) values to segments in a way that maximizes the
resulting information value (IV). The procedure stops when the IV increases less then specified by
a percentage value (sfop.limit parameter).

Binning of Factors

Factors (categorical variables) are binned via factor levels. As a start sparse levels (defined via the
min.perc.total and min.perc.class parameters) are merged to a ‘miscellaneous’ level: if possible,

woe.tree.binning 11

respective levels (including sparse NAs) are bundled as ‘misc. level pos.” (associated with positive
WOE values), respectively as ‘misc. level neg.’ (associated with negative WOE values). In case a
misc. level contains only NAs it will be named ‘Missing’. Afterwards the actual tree-like procedure
starts: binary splits iteratively assign levels with similar WOE values to segments in a way that
maximizes the resulting information value (IV). The procedure stops when the IV increases less
then specified by a percentage value (stop.limit parameter).

Adjustment of 0 Frequencies

In case the crosstab of the bins with the target classes contains frequencies = O the column per-
centages are adjusted to be able to compute the WOE and IV values: the offset 0.0001 (=0.01%)
is added to each column percentage cell and the column percentages are recomputed then. This
allows considering bins associated with one target class only, but may cause extreme WOE values
for these bins. If a correction is not appropriate choose min.perc.class>0; bins with sparse target
classes will be merged then before computing any WOE or IV value.

Handling of Missing Data

Cases with NAs in the target variable will be ignored. For predictor variables the following applies:
in case NAs already occurred when generating the binning solution the code ‘Missing’ is displayed
and a corresponding WOE value can be computed. (Note that factor NAs may be joined with
other sparse levels to a ‘miscellaneous’ level - see above; only this ‘miscellaneous’ level will be
displayed then.) In case NAs occur in the deployment scenario only ‘Missing’ is displayed for
numeric variables and ‘unknown’ for factors; and the corresponding WOE values will be NA then,
as well.

See Also

Other binning functions: woe.binning

Examples
Load German credit data and create subset
data(germancredit)
df <- germancredit[, c('creditability', 'credit.amount', 'duration.in.month',
'savings.account.and.bonds', 'purpose')]

Bin a single numeric variable

binning <- woe.tree.binning(df, 'creditability', 'duration.in.month',
min.perc.total=0.01, min.perc.class=0.01,
stop.limit=0.1, event.class='bad')

Bin a single factor

binning <- woe.tree.binning(df, 'creditability', 'purpose’,
min.perc.total=0.05, min.perc.class=0, stop.limit=0.1,
abbrev.fact.levels=50, event.class='bad')

Bin two variables (one numeric and one factor)
with default parameter settings
binning <- woe.tree.binning(df, 'creditability', c('credit.amount', 'purpose'))

12 woeBinning

Bin all variables of the data frame (apart from the target variable)
with default parameter settings
binning <- woe.tree.binning(df, 'creditability', df)

woeBinning Package for Supervised Weight of Evidence Binning

Description

This package generates, visualizes, tabulates and deploys a supervised weight of evidence (WOE)
binning of variables.

Details

The package woeBinning automates the process of binning of numeric variables and factors with
respect to a dichotomous target variable. Additionally, it visualizes the realized binning solution,
tabulates it and deploys it to (new) data. All functions can be used with single variables or an entire
data frame.

Binning Functions

* woe.binning generates a supervised fine and coarse classing of numeric variables and factors.

* woe.tree.binning generates a supervised tree-like segmentation of numeric variables and
factors.

* woe.binning.plot visualizes the binning solution generated and saved via woe.binning or
woe.tree.binning.

* woe.binning.table tabulates the binning solution generated and saved via woe.binning or
woe. tree.binning.

* woe.binning.deploy deploys the binning solution generated and saved via woe.binning or
woe. tree.binning to (new) data.

References

Siddiqi, N. 2006: Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring.
Hoboken, New Jersey: John Wiley & Sons.

Anderson, R. 2007: The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Man-
agement and Decision Automation. Oxford / New York: Oxford University Press.

Examples

Load German credit data and create subset

data(germancredit)

df <- germancredit[, c('creditability', 'credit.amount', 'duration.in.month',
'savings.account.and.bonds', 'purpose')]

Bin all variables of the data frame (apart from the target variable)

woeBinning

with default parameter settings
binning <- woe.binning(df, 'creditability', df)

Plot the binned variables
woe.binning.plot(binning)

Tabulate the binned variables
tabulate.binning <- woe.binning.table(binning)
tabulate.binning

Deploy the binning solution to the data frame

(i.e. add binned variables and corresponding WOE variables)

df.with.binned.vars.added <- woe.binning.deploy(df, binning,
add.woe.or.dum.var="woe")

Index

x data
germancredit, 2

abbreviate, 3, 10
germancredit, 2

woe.binning, 2,5,7, 8,11, 12
woe.binning.deploy, 3,5, 10, 12
woe.binning.plot, 3,7, 10, 12
woe.binning.table, 3, 8, 10, 12
woe.tree.binning, 4, 5,7, 8,9, 12
woeBinning, 12

14

	germancredit
	woe.binning
	woe.binning.deploy
	woe.binning.plot
	woe.binning.table
	woe.tree.binning
	woeBinning
	Index

