
Package ‘tergm’
June 15, 2025

Version 4.2.2

Date 2025-06-15

Title Fit, Simulate and Diagnose Models for Network Evolution Based on
Exponential-Family Random Graph Models

Depends ergm (>= 4.9.0), network (>= 1.19.0), networkDynamic (>=
0.11.5)

Imports robustbase (>= 0.99-4-1), coda (>= 0.19-4.1), statnet.common
(>= 4.12.0), ergm.multi (>= 0.3.0), purrr (>= 1.0.4), methods,
utils, nlme, MASS

LinkingTo ergm

Suggests rmarkdown (>= 2.29), knitr (>= 1.50), tibble (>= 3.3.0),
testthat (>= 3.2.3), covr (>= 3.6.4), networkLite (>= 1.1.0),
rlang (>= 1.1.6), lattice, parallel

BugReports https://github.com/statnet/tergm/issues

Description An integrated set of extensions to the 'ergm' package to analyze and simulate net-
work evolution based on exponential-family random graph mod-
els (ERGM). 'tergm' is a part of the 'statnet' suite of packages for network analysis. See Krivit-
sky and Handcock (2014) <doi:10.1111/rssb.12014> and Carnegie, Krivit-
sky, Hunter, and Goodreau (2015) <doi:10.1080/10618600.2014.903087>.

License GPL-3 + file LICENSE

URL https://statnet.org

VignetteBuilder rmarkdown, knitr

RoxygenNote 7.3.2.9000

Config/testthat/parallel true

Config/testthat/edition 3

Encoding UTF-8

NeedsCompilation yes

Author Pavel N. Krivitsky [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9101-3362>),

Mark S. Handcock [aut, ths],

1

https://github.com/statnet/tergm/issues
https://doi.org/10.1111/rssb.12014
https://doi.org/10.1080/10618600.2014.903087
https://statnet.org
https://orcid.org/0000-0002-9101-3362

2 Contents

David R. Hunter [ctb],
Steven M. Goodreau [ctb, ths],
Martina Morris [ctb, ths],
Nicole Bohme Carnegie [ctb],
Carter T. Butts [ctb],
Ayn Leslie-Cook [ctb],
Skye Bender-deMoll [ctb],
Li Wang [ctb],
Kirk Li [ctb],
Chad Klumb [ctb],
Adrien Le Guillou [ctb] (ORCID:

<https://orcid.org/0000-0002-4791-418X>)

Maintainer Pavel N. Krivitsky <pavel@statnet.org>

Repository CRAN

Date/Publication 2025-06-15 14:50:02 UTC

Contents
tergm-package . 3
.extract.fd.formulae . 5
Change-ergmTerm . 6
control.simulate.network . 7
control.simulate.tergm . 9
control.stergm . 11
control.tergm . 19
control.tergm.godfather . 26
Cross-ergmTerm . 27
degrange.mean.age-ergmTerm . 28
degree.mean.age-ergmTerm . 29
discord-ergmHint . 30
Diss-ergmTerm . 30
edge.ages-ergmTerm . 31
EdgeAges-ergmTerm . 32
edgecov.ages-ergmTerm . 32
edgecov.mean.age-ergmTerm . 33
edges.ageinterval-ergmTerm . 34
Form-ergmTerm . 35
impute.network.list . 36
is.durational . 37
lasttoggle . 38
mean.age-ergmTerm . 38
NetSeries . 39
nodefactor.mean.age-ergmTerm . 40
nodemix.mean.age-ergmTerm . 41
Persist-ergmTerm . 42
simulate.network . 43
simulate.tergm . 46

https://orcid.org/0000-0002-4791-418X

tergm-package 3

snctrl . 51
stergm . 54
summary_formula.networkDynamic . 57
tergm . 58
tergm.godfather . 61

Index 64

tergm-package tergm: Fit, Simulate and Diagnose Models for Network Evolution
Based on Exponential-Family Random Graph Models

Description

An integrated set of extensions to the ’ergm’ package to analyze and simulate network evolution
based on exponential-family random graph models (ERGM). ’tergm’ is a part of the ’statnet’ suite
of packages for network analysis. See Krivitsky and Handcock (2014) doi:10.1111/rssb.12014 and
Carnegie, Krivitsky, Hunter, and Goodreau (2015) doi:10.1080/10618600.2014.903087.

Details

tergm is a collection of extensions to the ergm package to fit, diagnose, and simulate models for
dynamic networks — networks that evolve over time — based on exponential-family random graph
models (ERGMs). For a list of functions type help(package='tergm')

When publishing results obtained using this package, please cite the original authors as described
in citation(package="tergm").

All programs derived from this package must cite it.

An exponential-family random graph model (ERGM) postulates an exponential family over the
sample space of networks of interest, and ergm package implements a suite of tools for modeling
single networks using ERGMs.

There have been a number of extensions of ERGMs for modeling the evolution of networks, includ-
ing the temporal ERGM (TERGM) of Hanneke et al. (2010) and the separable termporal ERGM
(STERGM) of Krivitsky and Handcock (2014). The latter model allows familiar ERGM terms
and statistics to be reused in a dynamic context, interpreted in terms of formation and dissolution
(persistence) of ties. Krivitsky (2012) suggested a method for fitting dynamic models when only a
cross-sectional network is available, provided some temporal information for it is available as well.

This package aims to implement these and other ERGM-based models for network evolution. At
this time, it implements, via the tergm() function, a general framework for modeling tie dynamics
in temporal networks with flexible model specification (including (S)TERGMs). Estimation options
include a conditional MLE (CMLE) approach for fitting to a series of networks and an Equilibrium
Generalized Method of Moments Estimation (EGMME) for fitting to a single network with temporal
information. For further development, see the referenced papers.

https://doi.org/10.1111/rssb.12014
https://doi.org/10.1080/10618600.2014.903087
https://CRAN.R-project.org/package=tergm
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm

4 tergm-package

Temporal model specification in tergm

The operator terms implemented by tergm are Form(), Persist(), Diss(), Cross(), and Change().
These are used to specify how the ergm terms (ergmTerm) in a formula are evaluated across a
network time-series. Note, you cannot use one of these operators within another temporal, so
Cross(~Form(~edges)) is not a valid specification. (Generally, nesting these operators within
other operators will often not work; nesting other operators within them will almost always work,
however.)

The durational terms are distinguished either by their name, mean.age, or their name extensions:
<name>.ages, <name>.mean.age, and <name>.age.interval. In contrast to their eponymous
terms in ergm, these durational terms take into account the elapsed time since each (term-relevant)
dyad in the network was last toggled.

As currently implemented, the package does not support use of many durational terms during esti-
mation, though it may work with some. But durational terms may be used as targets, monitors, or
summary statistics. The ability to use these terms in the estimation of models is under development.

Compatibility with previous versions

If you previously used the stergm() function in this package, please note that stergm() has been
superceded by the new tergm() function, and has been deprecated. The dissolution formula in
stergm() maps to the new Persist() operator in the tergm() function, not the Diss() operator.

For detailed information on how to download and install the software, go to the Statnet project
website: https://statnet.org. A tutorial, support newsgroup, references and links to further
resources are provided there.

Author(s)

Maintainer: Pavel N. Krivitsky <pavel@statnet.org> (ORCID)

Authors:

• Mark S. Handcock <handcock@stat.ucla.edu> [thesis advisor]

Other contributors:

• David R. Hunter <dhunter@stat.psu.edu> [contributor]

• Steven M. Goodreau <goodreau@u.washington.edu> [contributor, thesis advisor]

• Martina Morris <morrism@u.washington.edu> [contributor, thesis advisor]

• Nicole Bohme Carnegie <nicole.carnegie@nyu.edu> [contributor]

• Carter T. Butts <buttsc@uci.edu> [contributor]

• Ayn Leslie-Cook <aynlc3@uw.edu> [contributor]

• Skye Bender-deMoll <skyebend@skyeome.net> [contributor]

• Li Wang <lxwang@gmail.com> [contributor]

• Kirk Li <kirkli@uw.edu> [contributor]

• Chad Klumb <cklumb@gmail.com> [contributor]

• Adrien Le Guillou <git@aleguillou.org> (ORCID) [contributor]

https://CRAN.R-project.org/package=tergm
https://statnet.org
https://orcid.org/0000-0002-9101-3362
https://orcid.org/0000-0002-4791-418X

.extract.fd.formulae 5

References

Hanneke S, Fu W and Xing EP (2010). Discrete Temporal Models of Social Networks. Electronic
Journal of Statistics, 2010, 4, 585-605. doi:10.1214/09EJS548

Krackhardt, D and Handcock, MS (2006) Heider vs Simmel: Emergent features in dynamic struc-
tures. ICML Workshop on Statistical Network Analysis. Springer, Berlin, Heidelberg, 2006.

Krivitsky PN & Handcock MS (2014) A Separable Model for Dynamic Networks. Journal of the
Royal Statistical Society, Series B, 76(1): 29-46. doi:10.1111/rssb.12014

Krivitsky, PN (2012). Modeling of Dynamic Networks based on Egocentric Data with Durational
Information. Pennsylvania State University Department of Statistics Technical Report, 2012(2012-
01). https://web.archive.org/web/20170830053722/https://stat.psu.edu/research/technical-report-files/
2012-technical-reports/TR1201A.pdf

Butts CT (2008). network: A Package for Managing Relational Data in . Journal of Statistical
Software, 24(2). doi:10.18637/jss.v024.i02

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). doi:10.18637/jss.v024.i08

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). doi:10.18637/jss.v024.i03

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). doi:10.18637/
jss.v024.i04

See Also

Useful links:

• https://statnet.org

• Report bugs at https://github.com/statnet/tergm/issues

.extract.fd.formulae An Internal Function for Extracting (Some) Formation and Dissolu-
tion Formulas from a Combined Formula

Description

This function is used in tergm.EGMME.initialfit and also when targets or monitoring formulas
are specified by characters. It makes a basic attempt to identify the formation and dissolution for-
mulas within a larger combined formula (which may also include non-separable terms). Instances
of Form at the top level (which may occur inside offset) contribute to the formation formula; in-
stances of Persist and Diss at the top level (which may also occur inside offset) contribute to
the dissolution formula. All other terms are regarded as non-separable; this includes instances of
Form, Persist, and Diss that occur inside other operator terms, including inside Offset, and also

https://doi.org/10.1214/09-EJS548
https://doi.org/10.1111/rssb.12014
https://web.archive.org/web/20170830053722/https://stat.psu.edu/research/technical-report-files/2012-technical-reports/TR1201A.pdf
https://web.archive.org/web/20170830053722/https://stat.psu.edu/research/technical-report-files/2012-technical-reports/TR1201A.pdf
https://doi.org/10.18637/jss.v024.i02
https://doi.org/10.18637/jss.v024.i08
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v024.i04
https://doi.org/10.18637/jss.v024.i04
https://statnet.org
https://github.com/statnet/tergm/issues

6 Change-ergmTerm

includes all interactions at the top level (for which the top level term is effectively the interaction
operator * or :), whether or not they include Form, Persist, and/or Diss. The formation and
dissolution formulas are obtained by adding the contributing terms, replacing Form and Persist
with trivial operators that protect the environments of their formula arguments but have no effect
on statistics or coefficient names (meaning the formulas effectively become cross-sectional), and
replacing Diss by a similar operator that negates statistics. These are included in the return value
as the form and pers elements of the list (the "dissolution" formula really being the persistence
formula), which also includes the formula of non-separable terms as nonsep, and the formula of all
terms after replacing Form, Persist, and Diss as described above as all.

If usage proves problematic, one may specify the monitoring and/or targets formulas explicitly
(rather than by characters), and one may pass initial coefficient values for the EGMME to avoid
running tergm.EGMME.initialfit.

Usage

.extract.fd.formulae(formula)

Arguments

formula a formula.

Value

A list containing form, pers, nonsep, and all formulas as described above.

Change-ergmTerm The Change Operator Term

Description

The Change Operator Term

Usage

binary: Change(
formula,
lm = ~1,
subset = TRUE,
weights = 1,
contrasts = NULL,
offset = 0,
label = NULL
)

control.simulate.network 7

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated
lm, subset, weights, contrasts, offset, label

NetSeries() LHS only arguments to specify time-varying parameters. See N()
term operator in the ergm.multi for details. lm formula may reference .Time for
the network’s time index, .TimeID for the its index in the network series (where
the initial network is 1 and the first modelled network is 2), and .TimeDelta for
the time elapsed between the network and the immediately previous network in
the series.

Details

This term accepts a model formula and produces the corresponding model for a network constructed
by taking the dyads that have changed between time steps.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

control.simulate.network

Auxiliary for Controlling Separable Temporal ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning STERGM simulation.

Usage

control.simulate.network(
MCMC.burnin.min = 1000,
MCMC.burnin.max = 1e+05,
MCMC.burnin.pval = 0.5,
MCMC.burnin.add = 1,
MCMC.prop.form = ~discord + sparse,
MCMC.prop.diss = ~discord + sparse,
MCMC.prop.weights.form = "default",
MCMC.prop.weights.diss = "default",
MCMC.prop.args.form = NULL,
MCMC.prop.args.diss = NULL,
MCMC.maxedges = Inf,
MCMC.maxchanges = 1e+06,
term.options = NULL,
MCMC.packagenames = c()

)

8 control.simulate.network

control.simulate.stergm(
MCMC.burnin.min = NULL,
MCMC.burnin.max = NULL,
MCMC.burnin.pval = NULL,
MCMC.burnin.add = NULL,
MCMC.prop.form = NULL,
MCMC.prop.diss = NULL,
MCMC.prop.weights.form = NULL,
MCMC.prop.weights.diss = NULL,
MCMC.prop.args.form = NULL,
MCMC.prop.args.diss = NULL,
MCMC.maxedges = NULL,
MCMC.maxchanges = NULL,
term.options = NULL,
MCMC.packagenames = NULL

)

Arguments

MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval, MCMC.burnin.add
Number of Metropolis-Hastings steps per time step used in simulation. By
default, this is determined adaptively by keeping track of increments in the
Hamming distance between the transitioned-from network and the network be-
ing sampled. Once MCMC.burnin.min steps have elapsed, the increments are
tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than MCMC.burnin.pval), or
MCMC.burnin.max steps are proposed, whichever comes first, the simulation is
stopped after an additional MCMC.burnin.add times the number of elapsed steps
have been taken. (Stopping immediately would bias the sampling.)
To use a fixed number of steps, set MCMC.burnin.min and MCMC.burnin.max to
the same value.

MCMC.prop.form Hints and/or constraints for selecting and initializing the proposal.

MCMC.prop.weights.form

Specifies the proposal weighting scheme to be used in the MCMC Metropolis-
Hastings algorithm. Possible choices may be determined by calling ergm_proposal_table().

MCMC.prop.weights.diss, MCMC.prop.args.diss, MCMC.prop.diss
Ignored. These are included for backwards compatibility of calls to control
functions only; they have no effect on simulate behavior.

MCMC.prop.args.form

An alternative, direct way of specifying additional arguments to proposals.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

MCMC.maxchanges

Maximum number of changes for which to allocate space.

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

control.simulate.tergm 9

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

Details

This function is only used within a call to the simulate() function. See the Usage section in
simulate.stergm() for details.

These functions are included for backwards compatibility, and users are encouraged to use control.simulate.tergm
or control.simulate.formula.tergm with the simulate.tergm() family of functions instead.
When a control.simulate.stergm or control.simulate.network object is passed to one of
the simulate.stergm() functions, the corresponding simulate.tergm() function is invoked, and
uses the formation proposal control arguments, ignoring the dissolution proposal control arguments.

Note: The old dissolution formula in stergm represents tie persistence. As a result it maps to the
new Persist() operator in tergm, NOT the Diss() operator

Value

A list with arguments as components.

See Also

simulate.stergm(), simulate.formula(). control.stergm() performs a similar function for
stergm().

control.simulate.tergm

Auxiliary for Controlling Temporal ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning TERGM simulation.

Usage

control.simulate.tergm(
MCMC.burnin.min = NULL,
MCMC.burnin.max = NULL,
MCMC.burnin.pval = NULL,
MCMC.burnin.add = NULL,
MCMC.prop = NULL,
MCMC.prop.weights = NULL,
MCMC.prop.args = NULL,
MCMC.maxedges = NULL,
MCMC.maxchanges = NULL,
term.options = NULL,

10 control.simulate.tergm

MCMC.packagenames = NULL
)

control.simulate.formula.tergm(
MCMC.burnin.min = 1000,
MCMC.burnin.max = 1e+05,
MCMC.burnin.pval = 0.5,
MCMC.burnin.add = 1,
MCMC.prop = ~discord + sparse,
MCMC.prop.weights = "default",
MCMC.prop.args = NULL,
MCMC.maxedges = Inf,
MCMC.maxchanges = 1e+06,
term.options = NULL,
MCMC.packagenames = c()

)

Arguments

MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval, MCMC.burnin.add
Number of Metropolis-Hastings steps per time step used in simulation. By
default, this is determined adaptively by keeping track of increments in the
Hamming distance between the transitioned-from network and the network be-
ing sampled. Once MCMC.burnin.min steps have elapsed, the increments are
tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than MCMC.burnin.pval), or
MCMC.burnin.max steps are proposed, whichever comes first, the simulation is
stopped after an additional MCMC.burnin.add times the number of elapsed steps
have been taken. (Stopping immediately would bias the sampling.)

To use a fixed number of steps, set MCMC.burnin.min and MCMC.burnin.max to
the same value.

MCMC.prop Hints and/or constraints for selecting and initializing the proposal.

MCMC.prop.weights

Specifies the proposal weighting scheme to be used in the MCMC Metropolis-
Hastings algorithm. Possible choices may be determined by calling ergm_proposal_table().

MCMC.prop.args An alternative, direct way of specifying additional arguments to the proposal.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

MCMC.maxchanges

Maximum number of changes for which to allocate space.

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

control.stergm 11

Details

This function is only used within a call to the simulate() function. See the Usage section in
simulate.tergm() for details.

Value

A list with arguments as components.

See Also

simulate.tergm(), simulate.formula(). control.tergm() performs a similar function for
tergm().

control.stergm Auxiliary for Controlling Separable Temporal ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning ’stergm’ fitting.

Usage

control.stergm(
init.form = NULL,
init.diss = NULL,
init.method = NULL,
force.main = FALSE,
MCMC.prop.form = ~discord + sparse,
MCMC.prop.diss = ~discord + sparse,
MCMC.prop.weights.form = "default",
MCMC.prop.args.form = NULL,
MCMC.prop.weights.diss = "default",
MCMC.prop.args.diss = NULL,
MCMC.maxedges = Inf,
MCMC.maxchanges = 1e+06,
MCMC.packagenames = c(),
CMLE.MCMC.burnin = 1024 * 16,
CMLE.MCMC.interval = 1024,
CMLE.ergm = NULL,
CMLE.form.ergm = control.ergm(init = init.form, MCMC.burnin = CMLE.MCMC.burnin,
MCMC.interval = CMLE.MCMC.interval, MCMC.prop = MCMC.prop.form, MCMC.prop.weights =
MCMC.prop.weights.form, MCMC.prop.args = MCMC.prop.args.form, MCMC.maxedges =
MCMC.maxedges, MCMC.packagenames = MCMC.packagenames, parallel = parallel,

parallel.type = parallel.type, parallel.version.check = parallel.version.check,
parallel.inherit.MT = parallel.inherit.MT, force.main = force.main),

CMLE.diss.ergm = control.ergm(init = init.diss, MCMC.burnin = CMLE.MCMC.burnin,
MCMC.interval = CMLE.MCMC.interval, MCMC.prop = MCMC.prop.diss, MCMC.prop.weights =

12 control.stergm

MCMC.prop.weights.diss, MCMC.prop.args = MCMC.prop.args.diss, MCMC.maxedges =
MCMC.maxedges, MCMC.packagenames = MCMC.packagenames, parallel = parallel,

parallel.type = parallel.type, parallel.version.check = parallel.version.check,
parallel.inherit.MT = parallel.inherit.MT, force.main = force.main),

CMLE.NA.impute = c(),
CMLE.term.check.override = FALSE,
EGMME.main.method = c("Gradient-Descent"),
EGMME.initialfit.control = control.ergm(),
EGMME.MCMC.burnin.min = 1000,
EGMME.MCMC.burnin.max = 1e+05,
EGMME.MCMC.burnin.pval = 0.5,
EGMME.MCMC.burnin.add = 1,
MCMC.burnin = NULL,
MCMC.burnin.mul = NULL,
SAN.maxit = 4,
SAN.nsteps.times = 8,
SAN = control.san(term.options = term.options, SAN.maxit = SAN.maxit, SAN.prop =

MCMC.prop.form, SAN.prop.weights = MCMC.prop.weights.form, SAN.prop.args =
MCMC.prop.args.form, SAN.nsteps = round(sqrt(EGMME.MCMC.burnin.min *

EGMME.MCMC.burnin.max)) * SAN.nsteps.times, SAN.packagenames = MCMC.packagenames,
parallel = parallel, parallel.type = parallel.type, parallel.version.check =
parallel.version.check, parallel.inherit.MT = FALSE),

SA.restarts = 10,
SA.burnin = 1000,
SA.plot.progress = FALSE,
SA.max.plot.points = 400,
SA.plot.stats = FALSE,
SA.init.gain = 0.1,
SA.gain.decay = 0.5,
SA.runlength = 25,
SA.interval.mul = 2,
SA.init.interval = 500,
SA.min.interval = 20,
SA.max.interval = 500,
SA.phase1.minruns = 4,
SA.phase1.tries = 20,
SA.phase1.jitter = 0.1,
SA.phase1.max.q = 0.1,
SA.phase1.backoff.rat = 1.05,
SA.phase2.levels.max = 40,
SA.phase2.levels.min = 4,
SA.phase2.max.mc.se = 0.001,
SA.phase2.repeats = 400,
SA.stepdown.maxn = 200,
SA.stepdown.p = 0.05,
SA.stop.p = 0.1,
SA.stepdown.ct = 5,
SA.phase2.backoff.rat = 1.1,

control.stergm 13

SA.keep.oh = 0.5,
SA.keep.min.runs = 8,
SA.keep.min = 0,
SA.phase2.jitter.mul = 0.2,
SA.phase2.maxreljump = 4,
SA.guard.mul = 4,
SA.par.eff.pow = 1,
SA.robust = FALSE,
SA.oh.memory = 1e+05,
SA.refine = c("mean", "linear", "none"),
SA.se = TRUE,
SA.phase3.samplesize.runs = 10,
SA.restart.on.err = TRUE,
term.options = NULL,
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE,
...

)

Arguments

init.form, init.diss
numeric or NA vector equal in length to the number of parameters in the forma-
tion/dissolution model or NULL (the default); the initial values for the estimation
and coefficient offset terms. If NULL is passed, all of the initial values are com-
puted using the method specified by control$init.method. If a numeric vector
is given, the elements of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the
fixed offset coefficients. These should match the offset values given in
offset.coef.form and offset.coef.diss.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing coefficients from a previous run can be used to "resume" an uncoverged
stergm() run.

init.method Estimation method used to acquire initial values for estimation. If NULL (the de-
fault), the initial values are computed using the edges dissolution approximation
(Carnegie et al.) when appropriate; note that this relies on .extract.fd.formulae()
to identify the formation and dissolution parts of the formula; the user should
be aware of its behavior and limitations. If init.method is set to "zeros", the
initial values are set to zeros.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

14 control.stergm

MCMC.prop.form Hints and/or constraints for selecting and initializing the proposal.
MCMC.prop.weights.form

Specifies the proposal weighting to use.
MCMC.prop.args.form

A direct way of specifying arguments to the proposal.
MCMC.prop.weights.diss, MCMC.prop.args.diss, MCMC.prop.diss

Ignored.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

MCMC.maxchanges

Maximum number of changes in dynamic network simulation for which to allo-
cate space.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

CMLE.MCMC.burnin

Burnin used in CMLE fitting.
CMLE.MCMC.interval

Number of Metropolis-Hastings steps between successive draws when running
MCMC MLE.

CMLE.ergm A convenience argument for specifying both CMLE.form.ergm and CMLE.diss.ergm
at once. See control.ergm().

CMLE.form.ergm Control parameters used to fit the CMLE. See control.ergm().

CMLE.diss.ergm Ignored, with the exception of initial parameter values.

CMLE.NA.impute In STERGM CMLE, missing dyads in transitioned-to networks are accommo-
dated using methods of Handcock and Gile (2009), but a similar approach to
transitioned-from networks requires much more complex methods that are not,
currently, implemented. CMLE.NA.impute controls how missing dyads in transitioned-
from networks are be imputed. See argument imputers of impute.network.list()
for details.
By default, no imputation is performed, and the fitting stops with an error if any
transitioned-from networks have missing dyads.

CMLE.term.check.override

The method stergm() uses at this time to fit a series of more than two networks
requires certain assumptions to be made about the ERGM terms being used,
which are tested before a fit is attempted. This test sometimes fails despite the
model being amenable to fitting, so setting this option to TRUE overrides the
tests.

EGMME.main.method

Estimation method used to find the Equilibrium Generalized Method of Mo-
ments estimator. Currently only "Gradient-Descent" is implemented.

EGMME.initialfit.control

Control object for the ergm fit in tergm.EGMME.initialfit

control.stergm 15

EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max
Number of Metropolis-Hastings steps per time step used in EGMME fitting. By
default, this is determined adaptively by keeping track of increments in the Ham-
ming distance between the transitioned-from network and the network being
sampled. Once EGMME.MCMC.burnin.min steps have elapsed, the increments are
tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than EGMME.MCMC.burnin.pval),
or EGMME.MCMC.burnin.max steps are proposed, whichever comes first, the sim-
ulation is stopped after an additional EGMME.MCMC.burnin.add times the num-
ber of elapsed steps had been taken. (Stopping immediately would bias the
sampling.)
To use a fixed number of steps, set EGMME.MCMC.burnin.min and EGMME.MCMC.burnin.max
to the same value.

EGMME.MCMC.burnin.pval, EGMME.MCMC.burnin.add
Number of Metropolis-Hastings steps per time step used in EGMME fitting. By
default, this is determined adaptively by keeping track of increments in the Ham-
ming distance between the transitioned-from network and the network being
sampled. Once EGMME.MCMC.burnin.min steps have elapsed, the increments are
tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than EGMME.MCMC.burnin.pval),
or EGMME.MCMC.burnin.max steps are proposed, whichever comes first, the sim-
ulation is stopped after an additional EGMME.MCMC.burnin.add times the num-
ber of elapsed steps had been taken. (Stopping immediately would bias the
sampling.)
To use a fixed number of steps, set EGMME.MCMC.burnin.min and EGMME.MCMC.burnin.max
to the same value.

MCMC.burnin, MCMC.burnin.mul
No longer used. See EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max, EGMME.MCMC.burnin.pval,
EGMME.MCMC.burnin.pval, EGMME.MCMC.burnin.add and CMLE.MCMC.burnin
and CMLE.MCMC.interval.

SAN.maxit When target.stats argument is passed to ergm(), the maximum number of
attempts to use san() to obtain a network with statistics close to those specified.

SAN.nsteps.times

Multiplier for SAN.nsteps relative to MCMC.burnin. This lets one control the
amount of SAN burn-in (arguably, the most important of SAN parameters) with-
out overriding the other SAN defaults.

SAN SAN control parameters. See control.san()

SA.restarts Maximum number of times to restart a failed optimization process.

SA.burnin Number of time steps to advance the starting network before beginning the op-
timization.

SA.plot.progress, SA.plot.stats
Logical: Plot information about the fit as it proceeds. If SA.plot.progress==TRUE,
plot the trajectories of the parameters and target statistics as the optimization
progresses. If SA.plot.stats==TRUE, plot a heatmap representing correlations
of target statistics and a heatmap representing the estimated gradient.
Do NOT use these with non-interactive plotting devices like pdf(). (In fact, it
will refuse to do that with a warning.)

16 control.stergm

SA.max.plot.points

If SA.plot.progress==TRUE, the maximum number of time points to be plot-
ted. Defaults to 400. If more iterations elapse, they will be thinned to at most
400 before plotting.

SA.init.gain Initial gain, the multiplier for the parameter update size. If the process initially
goes crazy beyond recovery, lower this value.

SA.gain.decay Gain decay factor.

SA.runlength Number of parameter trials and updates per C run.

SA.interval.mul

The number of time steps between updates of the parameters is set to be this
times the mean duration of extant ties.

SA.init.interval

Initial number of time steps between updates of the parameters.

SA.min.interval, SA.max.interval
Upper and lower bounds on the number of time steps between updates of the
parameters.

SA.phase1.minruns

Number of runs during Phase 1 for estimating the gradient, before every gradient
update.

SA.phase1.tries

Number of runs trying to find a reasonable parameter and network configuration.

SA.phase1.jitter

Initial jitter standard deviation of each parameter.

SA.phase1.max.q

Q-value (false discovery rate) that a gradient estimate must obtain before it is
accepted (since sign is what is important).

SA.phase1.backoff.rat, SA.phase2.backoff.rat
If the run produces this relative increase in the approximate objective function,
it will be backed off.

SA.phase2.levels.min, SA.phase2.levels.max
Range of gain levels (subphases) to go through.

SA.phase2.max.mc.se

Approximate precision of the estimates that must be attained before stopping.

SA.phase2.repeats, SA.stepdown.maxn
A gain level may be repeated multiple times (up to SA.phase2.repeats) if
the optimizer detects that the objective function is improving or the estimating
equations are not centered around 0, so slowing down the parameters at that
point is counterproductive. To detect this it looks at the the window controlled
by SA.keep.oh, thinning objective function values to get SA.stepdown.maxn,
and 1) fitting a GLS model for a linear trend, with AR(2) autocorrelation and
2) conductiong an approximate Hotelling’s T^2 test for equality of estimating
equation values to 0. If there is no significance for either at SA.stepdown.p
SA.stepdown.ct runs in a row, the gain level (subphase) is allowed to end.
Otherwise, the process continues at the same gain level.

control.stergm 17

SA.stepdown.p, SA.stepdown.ct
A gain level may be repeated multiple times (up to SA.phase2.repeats) if
the optimizer detects that the objective function is improving or the estimating
equations are not centered around 0, so slowing down the parameters at that
point is counterproductive. To detect this it looks at the the window controlled
by SA.keep.oh, thinning objective function values to get SA.stepdown.maxn,
and 1) fitting a GLS model for a linear trend, with AR(2) autocorrelation and
2) conductiong an approximate Hotelling’s T^2 test for equality of estimating
equation values to 0. If there is no significance for either at SA.stepdown.p
SA.stepdown.ct runs in a row, the gain level (subphase) is allowed to end.
Otherwise, the process continues at the same gain level.

SA.stop.p At the end of each gain level after the minimum, if the precision is sufficiently
high, the relationship between the parameters and the targets is tested for evi-
dence of local nonlinearity. This is the p-value used.
If that test fails to reject, a Phase 3 run is made with the new parameter values,
and the estimating equations are tested for difference from 0. If this test fails to
reject, the optimization is finished.
If either of these tests rejects, at SA.stop.p, optimization is continued for an-
other gain level.

SA.keep.oh, SA.keep.min, SA.keep.min.runs
Parameters controlling how much of optimization history to keep for gradient
and covariance estimation.
A history record will be kept if it’s at least one of the following:

• Among the last SA.keep.oh (a fraction) of all runs.
• Among the last SA.keep.min (a count) records.
• From the last SA.keep.min.runs (a count) optimization runs.

SA.phase2.jitter.mul

Jitter standard deviation of each parameter is this value times its standard devi-
ation without jitter.

SA.phase2.maxreljump

To keep the optimization from "running away" due to, say, a poor gradient es-
timate building on itself, if a magnitude of change (Mahalanobis distance) in
parameters over the course of a run divided by average magnitude of change for
recent runs exceeds this, the change is truncated to this amount times the average
for recent runs.

SA.guard.mul The multiplier for the range of parameter and statistics values to compute the
guard width.

SA.par.eff.pow Because some parameters have much, much greater effects than others, it im-
proves numerical conditioning and makes estimation more stable to rescale the
kth estimating function by sk = (

∑q
i=1 G

2
i,k/Vi,i)

−p/2, where Gi,k is the es-
timated gradient of the ith target statistics with respect to kth parameter. This
parameter sets the value of p: 0 for no rescaling, 1 (default) for scaling by root-
mean-square normalized gradient, and greater values for greater penalty.

SA.robust Whether to use robust linear regression (for gradients) and covariance estima-
tion.

18 control.stergm

SA.oh.memory Absolute maximum number of data points per thread to store in the full opti-
mization history.

SA.refine Method, if any, used to refine the point estimate at the end: "linear" for linear
interpolation, "mean" for average, and "none" to use the last value.

SA.se Logical: If TRUE (the default), get an MCMC sample of statistics at the final
estimate and compute the covariance matrix (and hence standard errors) of the
parameters. This sample is stored and can also be used by mcmc.diagnostics()
to assess convergence.

SA.phase3.samplesize.runs

This many optimization runs will be used to determine whether the optimization
has converged and to estimate the standard errors.

SA.restart.on.err

Logical: if TRUE (the default) an error somewhere in the optimization process
will cause it to restart with a smaller gain value. Otherwise, the process will
stop. This is mainly used for debugging

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

seed Seed value (integer) for the random number generator. See set.seed().

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See ergm-parallel for details and troubleshooting.

parallel.type API to use for parallel processing. Defaults to using the parallel package with
PSOCK clusters. See ergm-parallel.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the stergm() function. See the Usage section in
stergm() for details. Generally speaking, control.stergm is remapped to control.tergm, with
dissolution controls ignored and formation controls used as controls for the overall tergm pro-
cess. An exception to this rule is the initial parameter values specified via init.form, init.diss,
CMLE.form.ergm$init, and CMLE.diss.ergm$init, which will be remapped jointly with the stergm()
arguments offset.coef.form and offset.coef.diss to determine the initial parameter values
passed to tergm.

It is recommended that new code make use of tergm and control.tergm directly; stergm wrappers
are included only for backwards compatibility.

Value

A list with arguments as components.

https://CRAN.R-project.org/package=ergm

control.tergm 19

References

Boer, P., Huisman, M., Snijders, T.A.B., and Zeggelink, E.P.H. (2003), StOCNET User\’s Manual.
Version 1.4.

Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.

Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for net-
works. Journal of Computational and Graphical Statistics, 15: 565-583.

Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2010), A Steplength Algorithm for Fitting
ERGMs, Penn State Department of Statistics Technical Report.

See Also

stergm(), tergm(), control.tergm(). The control.simulate.stergm() function performs a
similar function for simulate.tergm().

control.tergm Auxiliary for Controlling Temporal ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning ’tergm’ fitting.

Usage

control.tergm(
init = NULL,
init.method = NULL,
force.main = FALSE,
MCMC.prop = ~discord + sparse,
MCMC.prop.weights = "default",
MCMC.prop.args = NULL,
MCMC.maxedges = Inf,
MCMC.maxchanges = 1e+06,
MCMC.packagenames = c(),
CMLE.MCMC.burnin = 1024 * 16,
CMLE.MCMC.interval = 1024,
CMLE.ergm = control.ergm(init = init, MCMC.burnin = CMLE.MCMC.burnin, MCMC.interval =
CMLE.MCMC.interval, MCMC.prop = MCMC.prop, MCMC.prop.weights = MCMC.prop.weights,
MCMC.prop.args = MCMC.prop.args, MCMC.maxedges = MCMC.maxedges, MCMC.packagenames =
MCMC.packagenames, parallel = parallel, parallel.type = parallel.type,
parallel.version.check = parallel.version.check, force.main = force.main,
term.options = term.options),

CMLE.NA.impute = c(),
CMLE.term.check.override = FALSE,
EGMME.main.method = c("Gradient-Descent"),
EGMME.initialfit.control = control.ergm(),
EGMME.MCMC.burnin.min = 1000,

20 control.tergm

EGMME.MCMC.burnin.max = 1e+05,
EGMME.MCMC.burnin.pval = 0.5,
EGMME.MCMC.burnin.add = 1,
MCMC.burnin = NULL,
MCMC.burnin.mul = NULL,
SAN.maxit = 4,
SAN.nsteps.times = 8,
SAN = control.san(term.options = term.options, SAN.maxit = SAN.maxit, SAN.prop =
MCMC.prop, SAN.prop.weights = MCMC.prop.weights, SAN.prop.args = MCMC.prop.args,
SAN.nsteps = round(sqrt(EGMME.MCMC.burnin.min * EGMME.MCMC.burnin.max)) *
SAN.nsteps.times, SAN.packagenames = MCMC.packagenames, parallel = parallel,
parallel.type = parallel.type, parallel.version.check = parallel.version.check,
parallel.inherit.MT = parallel.inherit.MT),

SA.restarts = 10,
SA.burnin = 1000,
SA.plot.progress = FALSE,
SA.max.plot.points = 400,
SA.plot.stats = FALSE,
SA.init.gain = 0.1,
SA.gain.decay = 0.5,
SA.runlength = 25,
SA.interval.mul = 2,
SA.init.interval = 500,
SA.min.interval = 20,
SA.max.interval = 500,
SA.phase1.minruns = 4,
SA.phase1.tries = 20,
SA.phase1.jitter = 0.1,
SA.phase1.max.q = 0.1,
SA.phase1.backoff.rat = 1.05,
SA.phase2.levels.max = 40,
SA.phase2.levels.min = 4,
SA.phase2.max.mc.se = 0.001,
SA.phase2.repeats = 400,
SA.stepdown.maxn = 200,
SA.stepdown.p = 0.05,
SA.stop.p = 0.1,
SA.stepdown.ct = 5,
SA.phase2.backoff.rat = 1.1,
SA.keep.oh = 0.5,
SA.keep.min.runs = 8,
SA.keep.min = 0,
SA.phase2.jitter.mul = 0.2,
SA.phase2.maxreljump = 4,
SA.guard.mul = 4,
SA.par.eff.pow = 1,
SA.robust = FALSE,
SA.oh.memory = 1e+05,

control.tergm 21

SA.refine = c("mean", "linear", "none"),
SA.se = TRUE,
SA.phase3.samplesize.runs = 10,
SA.restart.on.err = TRUE,
term.options = NULL,
seed = NULL,
parallel = 0,
parallel.type = NULL,
parallel.version.check = TRUE,
parallel.inherit.MT = FALSE

)

Arguments

init numeric or NA vector equal in length to the number of parameters in the model
or NULL (the default); the initial values for the estimation and coefficient offset
terms. If NULL is passed, all of the initial values are computed using the method
specified by control$init.method. If a numeric vector is given, the elements
of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the
fixed offset coefficients. These should match the offset values given in
offset.coef.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing coefficients from a previous run can be used to "resume" an uncoverged
tergm() run.

init.method Estimation method used to acquire initial values for estimation. If NULL (the de-
fault), the initial values are computed using the edges dissolution approximation
(Carnegie et al.) when appropriate; note that this relies on .extract.fd.formulae()
to identify the formation and dissolution parts of the formula; the user should
be aware of its behavior and limitations. If init.method is set to "zeros", the
initial values are set to zeros.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

MCMC.prop Hints and/or constraints for selecting and initializing the proposal.

MCMC.prop.weights

Specifies the proposal weighting to use.

MCMC.prop.args A direct way of specifying arguments to the proposal.

MCMC.maxedges The maximum number of edges that may occur during the MCMC sampling. If
this number is exceeded at any time, sampling is stopped immediately.

MCMC.maxchanges

Maximum number of changes permitted to occur during the simulation.

22 control.tergm

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

CMLE.MCMC.burnin

Burnin used in CMLE fitting.
CMLE.MCMC.interval

Number of Metropolis-Hastings steps between successive draws when running
MCMC MLE.

CMLE.ergm Control parameters used to fit the CMLE. See control.ergm().

CMLE.NA.impute In TERGM CMLE, missing dyads in transitioned-to networks are accommo-
dated using methods of Handcock and Gile (2009), but a similar approach to
transitioned-from networks requires much more complex methods that are not,
currently, implemented. CMLE.NA.impute controls how missing dyads in transitioned-
from networks are be imputed. See argument imputers of impute.network.list()
for details.
By default, no imputation is performed, and the fitting stops with an error if any
transitioned-from networks have missing dyads.

CMLE.term.check.override

The method tergm() uses at this time to fit a series of more than two networks
requires certain assumptions to be made about the ERGM terms being used,
which are tested before a fit is attempted. This test sometimes fails despite the
model being amenable to fitting, so setting this option to TRUE overrides the
tests.

EGMME.main.method

Estimation method used to find the Equilibrium Generalized Method of Mo-
ments estimator. Currently only "Gradient-Descent" is implemented.

EGMME.initialfit.control

Control object for the ergm fit in tergm.EGMME.initialfit
EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max

Number of Metropolis-Hastings steps per time step used in EGMME fitting. By
default, this is determined adaptively by keeping track of increments in the Ham-
ming distance between the transitioned-from network and the network being
sampled. Once EGMME.MCMC.burnin.min steps have elapsed, the increments are
tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than EGMME.MCMC.burnin.pval),
or EGMME.MCMC.burnin.max steps are proposed, whichever comes first, the sim-
ulation is stopped after an additional EGMME.MCMC.burnin.add times the num-
ber of elapsed steps had been taken. (Stopping immediately would bias the
sampling.)
To use a fixed number of steps, set EGMME.MCMC.burnin.min and EGMME.MCMC.burnin.max
to the same value.

EGMME.MCMC.burnin.pval, EGMME.MCMC.burnin.add
Number of Metropolis-Hastings steps per time step used in EGMME fitting. By
default, this is determined adaptively by keeping track of increments in the Ham-
ming distance between the transitioned-from network and the network being
sampled. Once EGMME.MCMC.burnin.min steps have elapsed, the increments are

control.tergm 23

tested against 0, and when their average number becomes statistically indistin-
guishable from 0 (with the p-value being greater than EGMME.MCMC.burnin.pval),
or EGMME.MCMC.burnin.max steps are proposed, whichever comes first, the sim-
ulation is stopped after an additional EGMME.MCMC.burnin.add times the num-
ber of elapsed steps had been taken. (Stopping immediately would bias the
sampling.)
To use a fixed number of steps, set EGMME.MCMC.burnin.min and EGMME.MCMC.burnin.max
to the same value.

MCMC.burnin, MCMC.burnin.mul
No longer used. See EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max, EGMME.MCMC.burnin.pval,
EGMME.MCMC.burnin.pval, EGMME.MCMC.burnin.add and CMLE.MCMC.burnin
and CMLE.MCMC.interval.

SAN.maxit When target.stats argument is passed to ergm(), the maximum number of
attempts to use san() to obtain a network with statistics close to those specified.

SAN.nsteps.times

Multiplier for SAN.nsteps relative to MCMC.burnin. This lets one control the
amount of SAN burn-in (arguably, the most important of SAN parameters) with-
out overriding the other SAN defaults.

SAN SAN control parameters. See control.san()

SA.restarts Maximum number of times to restart a failed optimization process.

SA.burnin Number of time steps to advance the starting network before beginning the op-
timization.

SA.plot.progress, SA.plot.stats
Logical: Plot information about the fit as it proceeds. If SA.plot.progress==TRUE,
plot the trajectories of the parameters and target statistics as the optimization
progresses. If SA.plot.stats==TRUE, plot a heatmap representing correlations
of target statistics and a heatmap representing the estimated gradient.
Do NOT use these with non-interactive plotting devices like pdf(). (In fact, it
will refuse to do that with a warning.)

SA.max.plot.points

If SA.plot.progress==TRUE, the maximum number of time points to be plot-
ted. Defaults to 400. If more iterations elapse, they will be thinned to at most
400 before plotting.

SA.init.gain Initial gain, the multiplier for the parameter update size. If the process initially
goes crazy beyond recovery, lower this value.

SA.gain.decay Gain decay factor.

SA.runlength Number of parameter trials and updates per C run.
SA.interval.mul

The number of time steps between updates of the parameters is set to be this
times the mean duration of extant ties.

SA.init.interval

Initial number of time steps between updates of the parameters.
SA.min.interval, SA.max.interval

Upper and lower bounds on the number of time steps between updates of the
parameters.

24 control.tergm

SA.phase1.minruns

Number of runs during Phase 1 for estimating the gradient, before every gradient
update.

SA.phase1.tries

Number of runs trying to find a reasonable parameter and network configuration.
SA.phase1.jitter

Initial jitter standard deviation of each parameter.
SA.phase1.max.q

Q-value (false discovery rate) that a gradient estimate must obtain before it is
accepted (since sign is what is important).

SA.phase1.backoff.rat, SA.phase2.backoff.rat
If the run produces this relative increase in the approximate objective function,
it will be backed off.

SA.phase2.levels.min, SA.phase2.levels.max
Range of gain levels (subphases) to go through.

SA.phase2.max.mc.se

Approximate precision of the estimates that must be attained before stopping.
SA.phase2.repeats, SA.stepdown.maxn

A gain level may be repeated multiple times (up to SA.phase2.repeats) if
the optimizer detects that the objective function is improving or the estimating
equations are not centered around 0, so slowing down the parameters at that
point is counterproductive. To detect this it looks at the the window controlled
by SA.keep.oh, thinning objective function values to get SA.stepdown.maxn,
and 1) fitting a GLS model for a linear trend, with AR(2) autocorrelation and
2) conductiong an approximate Hotelling’s T^2 test for equality of estimating
equation values to 0. If there is no significance for either at SA.stepdown.p
SA.stepdown.ct runs in a row, the gain level (subphase) is allowed to end.
Otherwise, the process continues at the same gain level.

SA.stepdown.p, SA.stepdown.ct
A gain level may be repeated multiple times (up to SA.phase2.repeats) if
the optimizer detects that the objective function is improving or the estimating
equations are not centered around 0, so slowing down the parameters at that
point is counterproductive. To detect this it looks at the the window controlled
by SA.keep.oh, thinning objective function values to get SA.stepdown.maxn,
and 1) fitting a GLS model for a linear trend, with AR(2) autocorrelation and
2) conductiong an approximate Hotelling’s T^2 test for equality of estimating
equation values to 0. If there is no significance for either at SA.stepdown.p
SA.stepdown.ct runs in a row, the gain level (subphase) is allowed to end.
Otherwise, the process continues at the same gain level.

SA.stop.p At the end of each gain level after the minimum, if the precision is sufficiently
high, the relationship between the parameters and the targets is tested for evi-
dence of local nonlinearity. This is the p-value used.
If that test fails to reject, a Phase 3 run is made with the new parameter values,
and the estimating equations are tested for difference from 0. If this test fails to
reject, the optimization is finished.
If either of these tests rejects, at SA.stop.p, optimization is continued for an-
other gain level.

control.tergm 25

SA.keep.oh, SA.keep.min, SA.keep.min.runs
Parameters controlling how much of optimization history to keep for gradient
and covariance estimation.
A history record will be kept if it’s at least one of the following:

• Among the last SA.keep.oh (a fraction) of all runs.
• Among the last SA.keep.min (a count) records.
• From the last SA.keep.min.runs (a count) optimization runs.

SA.phase2.jitter.mul

Jitter standard deviation of each parameter is this value times its standard devi-
ation without jitter.

SA.phase2.maxreljump

To keep the optimization from "running away" due to, say, a poor gradient es-
timate building on itself, if a magnitude of change (Mahalanobis distance) in
parameters over the course of a run divided by average magnitude of change for
recent runs exceeds this, the change is truncated to this amount times the average
for recent runs.

SA.guard.mul The multiplier for the range of parameter and statistics values to compute the
guard width.

SA.par.eff.pow Because some parameters have much, much greater effects than others, it im-
proves numerical conditioning and makes estimation more stable to rescale the
kth estimating function by sk = (

∑q
i=1 G

2
i,k/Vi,i)

−p/2, where Gi,k is the es-
timated gradient of the ith target statistics with respect to kth parameter. This
parameter sets the value of p: 0 for no rescaling, 1 (default) for scaling by root-
mean-square normalized gradient, and greater values for greater penalty.

SA.robust Whether to use robust linear regression (for gradients) and covariance estima-
tion.

SA.oh.memory Absolute maximum number of data points per thread to store in the full opti-
mization history.

SA.refine Method, if any, used to refine the point estimate at the end: "linear" for linear
interpolation, "mean" for average, and "none" to use the last value.

SA.se Logical: If TRUE (the default), get an MCMC sample of statistics at the final
estimate and compute the covariance matrix (and hence standard errors) of the
parameters. This sample is stored and can also be used by mcmc.diagnostics()
to assess convergence.

SA.phase3.samplesize.runs

This many optimization runs will be used to determine whether the optimization
has converged and to estimate the standard errors.

SA.restart.on.err

Logical: if TRUE (the default) an error somewhere in the optimization process
will cause it to restart with a smaller gain value. Otherwise, the process will
stop. This is mainly used for debugging

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

seed Seed value (integer) for the random number generator. See set.seed().

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See ergm-parallel for details and troubleshooting.

26 control.tergm.godfather

parallel.type API to use for parallel processing. Defaults to using the parallel package with
PSOCK clusters. See ergm-parallel.

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

parallel.inherit.MT

Logical: If TRUE, slave nodes and processes inherit the set.MT_terms() set-
ting.

Details

This function is only used within a call to the tergm() function. See the Usage section in tergm()
for details.

Value

A list with arguments as components.

References

Boer, P., Huisman, M., Snijders, T.A.B., and Zeggelink, E.P.H. (2003), StOCNET User\’s Manual.
Version 1.4.

Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.

Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for net-
works. Journal of Computational and Graphical Statistics, 15: 565-583.

Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2010), A Steplength Algorithm for Fitting
ERGMs, Penn State Department of Statistics Technical Report.

See Also

tergm(). The control.simulate.tergm() function performs a similar function for simulate.tergm().

control.tergm.godfather

Control parameters for tergm.godfather().

Description

Returns a list of its arguments.

Usage

control.tergm.godfather(term.options = NULL)

Arguments

term.options A list of additional arguments to be passed to term initializers. See ? term.options.

https://CRAN.R-project.org/package=ergm

Cross-ergmTerm 27

Cross-ergmTerm The Crossection Operator Term

Description

The Crossection Operator Term

Usage

binary: Cross(
formula,
lm = ~1,
subset = TRUE,
weights = 1,
contrasts = NULL,
offset = 0,
label = NULL
)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated

lm, subset, weights, contrasts, offset, label
NetSeries() LHS only arguments to specify time-varying parameters. See N()
term operator in the ergm.multi for details. lm formula may reference .Time for
the network’s time index, .TimeID for the its index in the network series (where
the initial network is 1 and the first modelled network is 2), and .TimeDelta for
the time elapsed between the network and the immediately previous network in
the series.

Details

This term accepts a model formula and produces the corresponding model for the cross-sectional
network. It is mainly useful for CMLE estimation, and has no effect (i.e., Cross(~TERM) == ~TERM
) for EGMME and dynamic simulation.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

28 degrange.mean.age-ergmTerm

degrange.mean.age-ergmTerm

Average age of ties incident on nodes having degree in a given range

Description

Average age of ties incident on nodes having degree in a given range

Usage

binary: degrange.mean.age(from, to=+Inf, byarg=NULL, emptyval=0)

Arguments

from, to vectors of distinct integers or +Inf , for to . If one of the vectors has length
1, it is recycled to the length of the other. Otherwise, they must have the same
length.

byarg specifies a vertex attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.). If specified, then separate degree statistics are calculated for nodes
having each separate value of the attribute.

emptyval can be used to specify the value returned if the network does not have any actors
with degree in the specified range. This is, technically, an arbitrary value, but it
should not have a substantial effect unless a non-negligible fraction of networks
at the parameter configuration of interest has no actors with specified degree.

Details

This term adds one network statistic to the model for each element of from (or to); the i th such
statistic equals the average, among all ties incident on nodes with degree greater than or equal to
from[i] but strictly less than to[i] , of the amount of time elapsed since the tie’s formation. The
optional argument

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

degree.mean.age-ergmTerm 29

degree.mean.age-ergmTerm

Average age of ties incident on nodes having a given degree

Description

Average age of ties incident on nodes having a given degree

Usage

binary: degree.mean.age(d, byarg=NULL, emptyval=0)

Arguments

d a vector of distinct integers

byarg specifies a vertex attribute (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.). If specified, then separate degree statistics are calculated for nodes
having each separate value of the attribute.

emptyval can be used to specify the value returned if the network does not have any actors
with degree in the specified range. This is, technically, an arbitrary value, but it
should not have a substantial effect unless a non-negligible fraction of networks
at the parameter configuration of interest has no actors with specified degree.

Details

This term adds one network statistic to the model for each element in d ; the i th such statistic
equals the average, among all ties incident on nodes with degree exactly d[i] , of the amount of
time elapsed since the tie’s formation. The optional argument byarg specifies a vertex attribute (see
Specifying Vertex Attributes and Levels for details). If specified, then separate degree statistics are
calculated for nodes having each separate value of the attribute.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

30 Diss-ergmTerm

discord-ergmHint Discordant dyads

Description

Propose toggling discordant dyads with greater frequency (typically about 50 percent). May be
used in dynamic fitting and simulation.

Usage

discord

See Also

ergmHint for index of constraints and hints currently visible to the package.

Keywords: None

Diss-ergmTerm The Dissolution Operator Term

Description

The Dissolution Operator Term

Usage

binary: Diss(
formula,
lm = ~1,
subset = TRUE,
weights = 1,
contrasts = NULL,
offset = 0,
label = NULL
)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated
lm, subset, weights, contrasts, offset, label

NetSeries() LHS only arguments to specify time-varying parameters. See N()
term operator in the ergm.multi for details. lm formula may reference .Time for
the network’s time index, .TimeID for the its index in the network series (where
the initial network is 1 and the first modelled network is 2), and .TimeDelta for
the time elapsed between the network and the immediately previous network in
the series.

edge.ages-ergmTerm 31

Details

This term accepts a model formula and produces the corresponding model for the post-dissolution
network (same as Persist()), but with all statistics negated.

Note: This is not the equivalent of the old style dissolution model, because the signs of the coef-
ficients are reversed. So a larger positive coefficient for Diss() operator means more dissolution.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

edge.ages-ergmTerm Sum of ages of extant ties

Description

Sum of ages of extant ties

Usage

binary: edge.ages

Details

This term adds one statistic equaling sum, over all ties present in the network, of the amount of time
elapsed since formation.

Unlike mean.age , this statistic is well-defined on an empty network. However, if used as a target,
it appears to produce highly biased dissolution parameter estimates if the goal is to get an intended
average duration.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

32 edgecov.ages-ergmTerm

EdgeAges-ergmTerm The EdgeAges Operator Term

Description

The EdgeAges Operator Term

Usage

binary: EdgeAges(formula)

Arguments

formula cross-sectional, dyad-independent model formula

Details

This term accepts a cross-sectional, dyad-independent model formula. The statistics of the EdgeAges
term are equal to the sum over all extant ties of the tie age times the on-toggle change statistics for
the tie under the given model formula.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

edgecov.ages-ergmTerm Weighted sum of ages of extant ties

Description

Weighted sum of ages of extant ties

Usage

binary: edgecov.ages(x, attrname=NULL)

edgecov.mean.age-ergmTerm 33

Arguments

x, attrname a specification for the dyadic covariate: either one of the following, or the name
of a network attribute containing one of the following:

a covariate matrix with dimensions n×n for unipartite networks and b×(n−
b) for bipartite networks; attrname, if given, is used to construct the term
name.

a network object with the same size and bipartitedness as LHS; attrname, if
given, provides the name of the quantitative edge attribute to use for covari-
ate values (in this case, missing edges in x are assigned a covariate value of
zero).

Details

This term adds one statistic equaling sum, over all ties present in the network, of the amount of time
elapsed since formation, multiplied by a dyadic covariate.

"Weights" can be negative.

Unlike edgecov.mean.age , this statistic is well-defined on an empty network. However, if used as
a target, it appears to produce highly biased dissolution parameter estimates if the goal is to get an
intended average duration.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

edgecov.mean.age-ergmTerm

Weighted average age of an extant tie

Description

Weighted average age of an extant tie

Usage

binary: edgecov.mean.age(x, attrname=NULL, emptyval=0)

Arguments

x, attrname a specification for the dyadic covariate: either one of the following, or the name
of a network attribute containing one of the following:

a covariate matrix with dimensions n×n for unipartite networks and b×(n−
b) for bipartite networks; attrname, if given, is used to construct the term
name.

34 edges.ageinterval-ergmTerm

a network object with the same size and bipartitedness as LHS; attrname, if
given, provides the name of the quantitative edge attribute to use for covari-
ate values (in this case, missing edges in x are assigned a covariate value of
zero).

emptyval can be used to specify the value returned if the network is empty (or all extant
edges have been weighted 0). This is, technically, an arbitrary value, but it
should not have a substantial effect unless a non-negligible fraction of networks
at the parameter configuration of interest is empty and/or if only a few dyads
have nonzero weights.

Details

This term adds one statistic equaling the average, over all ties present in the network, of the amount
of time elapsed since formation, weighted by a (nonnegative) dyadic covariate.

The behavior when there are negative weights is undefined.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

edges.ageinterval-ergmTerm

Number of edges with age falling into a specified range

Description

Number of edges with age falling into a specified range

Usage

binary: edges.ageinterval(from, to=+Inf)

Arguments

from, to parameters to specify the lower bound and strict upper bounds. Can be scalars,
vectors of the same length, or one of them must have length one, in which case
it is recycled.

Details

This term counts the number of edges in the network for which the time elapsed since formation is
greater than or equal to from but strictly less than to . In other words, it is in the semiopen interval
[from, to) .

Form-ergmTerm 35

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

Form-ergmTerm The Formation Operator Term

Description

The Formation Operator Term

Usage

binary: Form(
formula,
lm = ~1,
subset = TRUE,
weights = 1,
contrasts = NULL,
offset = 0,
label = NULL
)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated
lm, subset, weights, contrasts, offset, label

NetSeries() LHS only arguments to specify time-varying parameters. See N()
term operator in the ergm.multi for details. lm formula may reference .Time for
the network’s time index, .TimeID for the its index in the network series (where
the initial network is 1 and the first modelled network is 2), and .TimeDelta for
the time elapsed between the network and the immediately previous network in
the series.

Details

This term accepts a model formula and produces the corresponding model for the post-formation
network: effectively a network containing both previous time step’s ties and ties just formed, the
union of the previous and current network. This is the equivalent of the old-style formation model.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

36 impute.network.list

impute.network.list Impute missing dyads in a series of networks

Description

This function takes a list of networks with missing dyads and returns a list of networks with missing
dyads imputed according to a list of imputation directives.

Usage

impute.network.list(
nwl,
imputers = c(),
nwl.prepend = list(),
nwl.append = list()

)

Arguments

nwl A list of network objects or a network.list object.

imputers A character vector giving one or more methods to impute missing dyads. Cur-
renly implemented methods are as follows:

next Impute the state of the same dyad in the next network in the list (or later,
if that one is also missing). This imputation method is likely to lead to an
underestimation of the tie-change rates. The last network in the list cannot
be imputed this way.

previous Impute the state of the same dyad in the previous network in the list
(or earlier, if that one is also missing). The first network in the list cannot
be imputed this way.

majority Impute the missing dyad with the value of the majority among the
non-missing dyads in that time step’s network. A network that has exactly
the same number of ties as non-missing non-ties cannot be imputed this
way.

0 Assume missing dyads are all non-ties.
1 Assume missing dyads are all ties.

If length(imputers)>1 the specified imputation methods will be applied in
succession. For example, imputers=c("next","previous","majority","0")
would first try to impute a missing dyad with the next time step’s value. If it,
and all of the later values for that dyad are missing, it will try to impute it with
the previous time step’s value. If it, and all of the earlier values for that dyad
are missing as well, it will try to impute it with the value of the majority of
non-missing dyads for that time step. If there is an exact tie, it will impute 0.

nwl.prepend An optional list of networks to treat as preceding those in nwl. They will not
be imputed or returned, but they can be useful for imputing dyads in the first
network in nwl, when using "previous" imputer.

is.durational 37

nwl.append An optional list of networks to treat as following those in nwl. They will not
be imputed or returned, but they can be useful for imputing dyads in the last
network in nwl, when using "next" imputer.

Value

A list of networks with missing dyads imputed.

See Also

network, is.na()

is.durational Testing for duration dependent models

Description

These functions test whether an ERGM is duration dependent or not.

The method for NULL always returns FALSE by convention.

Usage

is.durational(object, ...)

S3 method for class '`NULL`'
is.durational(object, ...)

S3 method for class 'ergm_model'
is.durational(object, ...)

S3 method for class 'ergm_state'
is.durational(object, ...)

S3 method for class 'formula'
is.durational(object, response = NULL, basis = ergm.getnetwork(object), ...)

Arguments

object An ERGM formula, ergm_model object, or ergm_state object.

... Unused at this time.

response, basis See ergm().

Value

TRUE if the ERGM terms in the model are duration dependent; FALSE otherwise.

38 mean.age-ergmTerm

Methods (by class)

• is.durational(ergm_model): Test if the ergm_model has duration-dependent terms, which
call for lasttoggle data structures.

• is.durational(ergm_state): Test if the ergm_state has duration-dependent terms, which
call for lasttoggle data structures.

lasttoggle Lasttoggle

Description

A data structure used by tergm for tracking of limited information about dyad edge histories.

Details

The tergm package handles durational information attached to network objects by way of the time
and lasttoggle network attributes. The lasttoggle data structure is a 3-column matrix; the first
two columns are tails and heads (respectively) of dyads, and the third column is the last time at
which the dyad was toggled. The default last toggle time is -INT_MAX/2. Last toggle times for
non-edges are periodically cleared in the C code. The time network attribute is simply an integer,
and together with the lasttoggle data it determines the age of an extant tie as time + 1 minus the
last toggle time for that dyad. The default value for time is 0.

mean.age-ergmTerm Average age of an extant tie

Description

Average age of an extant tie

Usage

binary: mean.age(emptyval=0, log=FALSE)

Arguments

emptyval can be used to specify the value returned if the network is empty. This is, tech-
nically, an arbitrary value, but it should not have a substantial effect unless a
non-negligible fraction of networks at the parameter configuration of interest is
empty.

log logical specifying if mean log age should be returned instead of mean age

Details

This term adds one statistic equaling the average, over all ties present in the network, of the amount
of time elapsed since formation.

NetSeries 39

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

NetSeries A network series specification for conditional modeling.

Description

A function for specifying the LHS of a temporal network series ERGM.

Usage

NetSeries(..., order = 1, NA.impute = NULL)

Arguments

... series specification, in one of three formats:

1. A list of identically- dimensioned and directed networks.
2. Several networks as arguments.
3. A networkDynamic object and a numeric vector of time indices.

order how many previous networks to store as an accessible covariate of the model.

NA.impute How missing dyads in transitioned-from networks are be imputed when using
conditional estimation. See argument imputers of impute.network.list()
for details.

Value

A network object with temporal metadata.

Note

It is not recommended to modify the network returned by NetSeries except by adding and re-
moving edges, and even that must be done with some care, to avoid putting it into an inconsistent
state.

It is almost always better to modify the original networks and regenerate the series.

See Also

ergmTerm for specific terms.

40 nodefactor.mean.age-ergmTerm

Examples

data(samplk)

Method 1: list of networks
monks <- NetSeries(list(samplk1,samplk2,samplk3))
ergm(monks ~ Form(~edges)+Diss(~edges))
ergm(monks ~ Form(~edges)+Persist(~edges))

Method 2: networks as arguments
monks <- NetSeries(samplk1,samplk2,samplk3)
ergm(monks ~ Form(~edges)+Diss(~edges))
ergm(monks ~ Form(~edges)+Persist(~edges))

Method 3: networkDynamic and time points:
TODO

nodefactor.mean.age-ergmTerm

Average ages of extant half-ties incident on nodes of specified attribute
levels

Description

Average ages of extant half-ties incident on nodes of specified attribute levels

Usage

binary: nodefactor.mean.age(attr, levels=NULL, emptyval=0, log=FALSE)

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

levels controls what levels are included. Note that the default levels value for nodefactor.mean.age
retains all levels, unlike the default for nodefactor , which omits the first level.

emptyval can be used to specify the value returned if the network is empty. A different
value may be specified for each level of attr. The length of emptyval should
either be 1 (in which case that value is used for every level of attr) or should
be equal to the number of retained levels of attr , in which case the i th value
in emptyval is used for the i th retained level of attr. This is, technically, an
arbitrary value, but it should not have a substantial effect unless a non-negligible
fraction of networks at the parameter configuration of interest is empty.

log logical specifying if mean log age should be returned instead of mean age

nodemix.mean.age-ergmTerm 41

Details

This term adds one statistic for each level of attr , equaling the average, over all half-ties incident
on nodes of that level, of the amount of time elapsed since formation.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

nodemix.mean.age-ergmTerm

Average ages of extant ties of specified mixing types

Description

Average ages of extant ties of specified mixing types

Usage

binary: nodemix.mean.age(attr, b1levels=NULL, b2levels=NULL, levels=NULL,
levels2=NULL, emptyval=0, log=FALSE)

Arguments

attr a vertex attribute specification (see Specifying Vertex attributes and Levels (?nodal_attributes)
for details.)

b1levels, b2levels, levels, level2
control what statistics are included in the model and the order in which they
appear. levels2 apply to all networks; levels applies to unipartite networks;
b1levels and b2levels apply to bipartite networks (see Specifying Vertex at-
tributes and Levels (?nodal_attributes) for details)

emptyval can be used to specify the value returned if the network is empty. A different
value may be specified for each mixing type of attr. The length of emptyval
should either be 1 (in which case that value is used for every mixing type of attr
) or should be equal to the number of retained mixing types of attr , in which
case the i th value in emptyval is used for the i th retained mixing type of attr.
This is, technically, an arbitrary value, but it should not have a substantial effect
unless a non-negligible fraction of networks at the parameter configuration of
interest is empty.

log logical specifying if mean log age should be returned instead of mean age

Details

This term adds one statistic for each mixing type of attr , equaling the average, over all ties of that
mixing type, of the amount of time elapsed since formation.

42 Persist-ergmTerm

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

Persist-ergmTerm The Persistence Operator Term

Description

The Persistence Operator Term

Usage

binary: Persist(
formula,
lm = ~1,
subset = TRUE,
weights = 1,
contrasts = NULL,
offset = 0,
label = NULL
)

Arguments

formula a one-sided ergm()-style formula with the terms to be evaluated
lm, subset, weights, contrasts, offset, label

NetSeries() LHS only arguments to specify time-varying parameters. See N()
term operator in the ergm.multi for details. lm formula may reference .Time for
the network’s time index, .TimeID for the its index in the network series (where
the initial network is 1 and the first modelled network is 2), and .TimeDelta for
the time elapsed between the network and the immediately previous network in
the series.

Details

This term accepts a model formula and produces the corresponding model for the post-dissolution/persistence
network: effectively the network containing ties that persisted since the last time step.

This is the equivalent of the old-style dissolution model. So a larger positive coefficient for
Persist() operator means less dissolution. It produces the same results as the new Diss() opera-
tor, except the signs of the coefficients are negated.

See Also

ergmTerm for index of model terms currently visible to the package.

Keywords: None

simulate.network 43

simulate.network STERGM wrappers for TERGM simulation

Description

The simulate.network and simulate.networkDynamic wrappers are provided for backwards
compatibility. It is recommended that new code make use of the simulate_formula.network and
simulate_formula.networkDynamic functions instead. See simulate.tergm() for details on
these new functions.

Usage

S3 method for class 'network'
simulate(
object,
nsim = 1,
seed = NULL,
formation,
dissolution,
coef.form,
coef.diss,
constraints = ~.,
monitor = NULL,
time.slices = 1,
time.start = NULL,
time.burnin = 0,
time.interval = 1,
time.offset = 1,
control = control.simulate.network(),
output = c("networkDynamic", "stats", "changes", "final", "ergm_state"),
stats.form = FALSE,
stats.diss = FALSE,
verbose = FALSE,
...

)

S3 method for class 'networkDynamic'
simulate(
object,
nsim = 1,
seed = NULL,
formation,
dissolution,
coef.form = attr(object, "coef.form"),
coef.diss = attr(object, "coef.diss"),
constraints = ~.,
monitor = NULL,

44 simulate.network

time.slices = 1,
time.start = NULL,
time.burnin = 0,
time.interval = 1,
time.offset = 1,
control = control.simulate.network(),
output = c("networkDynamic", "stats", "changes", "final", "ergm_state"),
stats.form = FALSE,
stats.diss = FALSE,
verbose = FALSE,
...

)

Arguments

object an object of type network or networkDynamic
nsim Number of replications (separate chains of networks) of the process to run and

return. The networkDynamic method only supports nsim=1.
seed Seed value (integer) for the random number generator. See set.seed().
formation, dissolution

One-sided ergm()-style formulas for the formation and dissolution models, re-
spectively. The dissolution model is parameterized in terms of tie persistence.

coef.form Parameters for the formation model.
coef.diss Parameters for the dissolution (persistence) model.
constraints A formula specifying one or more constraints on the support of the distribution

of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-
ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

monitor A one-sided formula specifying one or more terms whose value is to be moni-
tored. If monitor is specified as a character (one of "formation", "dissolution",
and "all") then the function .extract.fd.formulae() is used to determine
the corresponding formula; the user should be aware of its behavior and limita-
tions.

simulate.network 45

time.slices Number of time slices (or statistics) to return from each replication of the dy-
namic process. See below for return types. Defaults to 1, which, if time.burnin==0
and time.interval==1 (the defaults), advances the process one time step.

time.start An optional argument specifying the time point at which the simulation is to
start. See Details for further information.

time.burnin Number of time steps to discard before starting to collect network statistics.

time.interval Number of time steps between successive recordings of network statistics.

time.offset Argument specifying the offset between the point when the state of the net-
work is sampled (time.start) and the the beginning of the spell that should be
recorded for the newly simulated network state.

control A list of control parameters for algorithm tuning, constructed using control.simulate.network().
These are mapped to control.simulate.formula.tergm() controls by as-
signing:

• MCMC.prop.form to MCMC.prop,
• MCMC.prop.args.form to MCMC.prop.args, and
• MCMC.prop.weights.form to MCMC.prop.weights.

output A character vector specifying output type: one of "networkDynamic" (the de-
fault), "stats", "changes", "final", and "ergm_state", with partial match-
ing allowed.

stats.form, stats.diss
Logical: Whether to return formation/dissolution model statistics. This is not
the recommended method: use the monitor argument instead. Note that if ei-
ther stats.form or stats.diss is TRUE, all generative model statistics will be
returned.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Further arguments passed to or used by methods.

Details

Note that return values may be structured differently than in past versions.

Remember that in stergm, the dissolution formula is parameterized in terms of tie persistence:
negative coefficients imply lower rates of persistence and postive coefficients imply higher rates.
The dissolution effects are simply the negation of these coefficients.

Because the old dissolution formula in stergm represents tie persistence, it maps to the new
Persist() operator in the tergm function, NOT the Diss() operator

Value

Depends on the output argument. See simulate.tergm() for details. Note that some forma-
tion/dissolution separated information is also attached to the return value for calls made through
simulate.network and simulate.networkDynamic in an attempt to increase backwards compat-
ibility.

46 simulate.tergm

Examples

logit<-function(p)log(p/(1-p))
coef.form.f<-function(coef.diss,density) -log(((1+exp(coef.diss))/(density/(1-density)))-1)

Construct a network with 20 nodes and 20 edges
n<-20
target.stats<-edges<-20
g0<-network.initialize(n,dir=TRUE)
g1<-san(g0~edges,target.stats=target.stats,verbose=TRUE)

S<-10

To get an average duration of 10...
duration<-10
coef.diss<-logit(1-1/duration)

To get an average of 20 edges...
dyads<-network.dyadcount(g1)
density<-edges/dyads
coef.form<-coef.form.f(coef.diss,density)

... coefficients.
print(coef.form)
print(coef.diss)

Simulate a networkDynamic
dynsim<-simulate(g1,formation=~edges,dissolution=~edges,

coef.form=coef.form,coef.diss=coef.diss,
time.slices=S,verbose=TRUE)

"Resume" the simulation.
dynsim2<-simulate(dynsim,formation=~edges,dissolution=~edges,time.slices=S,verbose=TRUE)

simulate.tergm Draw from the distribution of a Temporal Exponential Family Random
Graph Model

Description

simulate() is used to draw from temporal exponential family random network models in their
natural parameterizations. See tergm() for more information on these models.

Usage

S3 method for class 'tergm'
simulate(
object,
nsim = 1,

simulate.tergm 47

seed = NULL,
coef = coefficients(object),
constraints = object$constraints,
monitor = object$targets,
time.slices = 1,
time.start = NULL,
time.burnin = 0,
time.interval = 1,
control = control.simulate.tergm(),
output = c("networkDynamic", "stats", "changes", "final", "ergm_state"),
nw.start = NULL,
stats = FALSE,
verbose = FALSE,
...

)

S3 method for class 'network'
simulate_formula(
object,
nsim = 1,
seed = NULL,
coef = NULL,
constraints = ~.,
monitor = NULL,
time.slices = 1,
time.start = NULL,
time.burnin = 0,
time.interval = 1,
time.offset = 1,
control = control.simulate.formula.tergm(),
output = c("networkDynamic", "stats", "changes", "final", "ergm_state"),
stats = FALSE,
verbose = FALSE,
...,
basis = ergm.getnetwork(object),
dynamic = FALSE

)

S3 method for class 'networkDynamic'
simulate_formula(
object,
nsim = 1,
seed = NULL,
coef = attr(basis, "coef"),
constraints = ~.,
monitor = NULL,
time.slices = 1,
time.start = NULL,

48 simulate.tergm

time.burnin = 0,
time.interval = 1,
time.offset = 1,
control = control.simulate.formula.tergm(),
output = c("networkDynamic", "stats", "changes", "final", "ergm_state"),
stats = FALSE,
verbose = FALSE,
...,
basis = eval_lhs.formula(object),
dynamic = FALSE

)

Arguments

object for simulate.tergm, an object of type tergm giving a model fit; for simulate_formula.network
and simulate_formula.networkDynamic, a formula specifying the model
simulate_formula.network understands the lasttoggle "API".

nsim Number of replications (separate chains of networks) of the process to run and
return. The networkDynamic method only supports nsim=1.

seed Seed value (integer) for the random number generator. See set.seed().
coef Parameters for the model.
constraints A formula specifying one or more constraints on the support of the distribution

of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-
ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

monitor A one-sided formula specifying one or more terms whose value is to be moni-
tored. If monitor is specified as a character (one of "formation", "dissolution",
and "all") then the function .extract.fd.formulae() is used to determine
the corresponding formula; the user should be aware of its behavior and limita-
tions.

time.slices Number of time slices (or statistics) to return from each replication of the dy-
namic process. See below for return types. Defaults to 1, which, if time.burnin==0
and time.interval==1 (the defaults), advances the process one time step.

simulate.tergm 49

time.start An optional argument specifying the time point at which the simulation is to
start. See Details for further information.

time.burnin Number of time steps to discard before starting to collect network statistics.

time.interval Number of time steps between successive recordings of network statistics.

control A list of control parameters for algorithm tuning. Constructed using control.simulate.tergm()
or control.simulate.formula.tergm(). For backwards compatibility, con-
trol lists from control.simulate.stergm() and control.simulate.network()
are allowed in calls to simulate.tergm; they are mapped to control.simulate.tergm
by assigning:

• MCMC.prop.form to MCMC.prop,

• MCMC.prop.args.form to MCMC.prop.args,

• MCMC.prop.weights.form to MCMC.prop.weights.

output A character vector specifying output type: one of "networkDynamic" (the de-
fault), "stats", "changes", "final", and "ergm_state", with partial match-
ing allowed. See Value section for details.

nw.start A specification for the starting network to be used by simulate.tergm, optional
for EGMME fits, but required for CMLE and CMPLE fits:

a numeric index i use ith time-point’s network, where the first network in the
series used to fit the model is defined to be at the first time point;

"first" or "last" the first or last time point used in fitting the model; or

network specify the network directly.

networkDynamics cannot be used as starting networks for simulate.tergm at
this time. (They can be used as starting networks for simulate_formula.networkDynamic,
of course.)

stats Logical: Whether to return model statistics. This is not the recommended
method: use monitor argument instead.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Further arguments passed to or used by methods.

time.offset Argument specifying the offset between the point when the state of the net-
work is sampled (time.start) and the the beginning of the spell that should be
recorded for the newly simulated network state.

basis For the network and networkDynamic methods, the network to start the simu-
lation from. (If basis is missing, the default is the left hand side of the object
argument.)

dynamic Logical; if TRUE, dynamic simulation is performed in tergm; if FALSE (the de-
fault), ordinary ergm simulation is performed instead. Note that when dynamic=FALSE,
default argument values for ergm’s simulate methods are used.

50 simulate.tergm

Details

The dynamic process is run forward and the results are returned. For the method for networkDynamic,
the simulation is resumed from the last generated time point of basis (or the left hand side of
object if basis is missing), by default with the same model and parameters.

The starting network for the tergm object method (simulate.tergm) is determined by the nw.start
argument.

• If time.start is specified, it is used as the initial time index of the simulation.

• If time.start is not specified (is NULL), then if the object carries a time stamp from which
to start or resume the simulation, either in the form of a "time" network attribute (for the
network method — see the lasttoggle "API") or in the form of an net.obs.period net-
work attribute (for the networkDynamic method), this attribute will be used. (If specified,
time.start will override it with a warning.)

• Othewise, the simulation starts at 0.

Value

Depends on the output argument:

"stats" If stats == FALSE, an mcmc matrix with monitored statistics, and if stats ==
TRUE, a list containing elements stats for statistics specified in the monitor ar-
gument, and stats.gen for the model statistics. If stats == FALSE and no mon-
itored statistics are specified, an empty list is returned, with a warning. When
nsim>1, an mcmc.list (or list of them) of the statistics is returned instead.

"networkDynamic"

A networkDynamic object representing the simulated process, with ties present
in the initial network having onset -Inf and ties present at the end of the simula-
tion having terminus +Inf. The method for networkDynamic returns the initial
networkDynamic with simulated changes applied to it. The net.obs.period
network attribute is updated (or added if not existing) to reflect the time pe-
riod that was simulated. If the network does not have any persistent.ids
defined for vertices, a vertex.pid will be attached in a vertex attribute named
'tergm_pid' to facilitate ’bookkeeping’ between the networkDynamic argu-
ment and the simulated network time step. Additionally, attributes (attr(), not
network attributes) are attached as follows:

formula, monitor: Model and monitoring formulas used in the simulation, re-
spectively.

stats, stats.gen: Network statistics as above.
coef: Coefficients used in the simulation.
changes: A four-column matrix summarizing the changes in the "changes"

output. (This may be removed in the future.)

When nsim>1, a network.list of these networkDynamics is returned.

"changes" An integer matrix with four columns (time, tail, head, and to), giving the
time-stamped changes relative to the current network. to is 1 if a tie was formed
and 0 if a tie was dissolved. The convention for time is that it gives the time
point during which the change is effective. For example, a row c(5,2,3,1)

snctrl 51

indicates that between time 4 and 5, a tie from node 2 to node 3 was formed,
so that it was absent at time point 4 and present at time point 5; while a row
c(5,2,3,0) indicates that in that time, that tie was dissolved, so that it is was
present at time point 4 and absent at time point 5. Additionally, the same at-
tributes (attr(), not network attributes) as with output=="networkDynamic"
are attached. When nsim>1, a list of these change matrices is returned.

"final" A network object representing the last network in the series generated. lasttoggle
and time attributes are also included. Additionally, the same attributes (attr(),
not network attributes) as with output=="networkDynamic" are attached. When
nsim>1, a network.list of these networks is returned.

"ergm_state" The ergm_state object resulting from the simulation. Attributes are attached as
for other output types.

Note that when using simulate_formula.networkDynamic with either "final" or "ergm_state"
for output, the nodes included in these objects are those produced by network.collapse at the
start time.

Examples

data(samplk)

Fit a transition from Time 1 to Time 2
samplk12 <- tergm(list(samplk1, samplk2)~

Form(~edges+mutual+transitiveties+cyclicalties)+
Diss(~edges+mutual+transitiveties+cyclicalties),
estimate="CMLE")

direct simulation from tergm object
sim1 <- simulate(samplk12, nw.start="last")

equivalent simulation from formula with network LHS;
must pass dynamic=TRUE for tergm simulation
sim2 <- simulate(samplk2 ~ Form(~edges+mutual+transitiveties+cyclicalties) +

Diss(~edges+mutual+transitiveties+cyclicalties),
coef = coef(samplk12),
dynamic=TRUE)

the default simulate output is a networkDynamic, and we can simulate
with a networkDynamic LHS as well
sim3 <- simulate(sim2 ~ Form(~edges+mutual+transitiveties+cyclicalties) +

Diss(~edges+mutual+transitiveties+cyclicalties),
coef = coef(samplk12),
dynamic=TRUE)

snctrl Statnet Control

52 snctrl

Description

A utility to facilitate argument completion of control lists, reexported from statnet.common.

Currently recognised control parameters

This list is updated as packages are loaded and unloaded.

Package ergm:

control.ergm drop, init, init.method, main.method, force.main, main.hessian, checkpoint,
resume, MPLE.samplesize, init.MPLE.samplesize, MPLE.type, MPLE.maxit, MPLE.nonvar,
MPLE.nonident, MPLE.nonident.tol, MPLE.covariance.samplesize, MPLE.covariance.method,
MPLE.covariance.sim.burnin, MPLE.covariance.sim.interval, MPLE.check, MPLE.constraints.ignore,
MCMC.prop, MCMC.prop.weights, MCMC.prop.args, MCMC.interval, MCMC.burnin, MCMC.samplesize,
MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.burnin.pval,
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max, MCMC.effectiveSize.burnin.nmin,
MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max, MCMC.return.stats, MCMC.runtime.traceplot, MCMC.maxedges,
MCMC.addto.se, MCMC.packagenames, SAN.maxit, SAN.nsteps.times, SAN, MCMLE.termination,
MCMLE.maxit, MCMLE.conv.min.pval, MCMLE.confidence, MCMLE.confidence.boost, MCMLE.confidence.boost.threshold,
MCMLE.confidence.boost.lag, MCMLE.NR.maxit, MCMLE.NR.reltol, obs.MCMC.mul, obs.MCMC.samplesize.mul,
obs.MCMC.samplesize, obs.MCMC.effectiveSize, obs.MCMC.interval.mul, obs.MCMC.interval,
obs.MCMC.burnin.mul, obs.MCMC.burnin, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args,
obs.MCMC.impute.min_informative, obs.MCMC.impute.default_density, MCMLE.min.depfac,
MCMLE.sampsize.boost.pow, MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac, MCMLE.metric,
MCMLE.method, MCMLE.dampening, MCMLE.dampening.min.ess, MCMLE.dampening.level,
MCMLE.steplength.margin, MCMLE.steplength, MCMLE.steplength.parallel, MCMLE.sequential,
MCMLE.density.guard.min, MCMLE.density.guard, MCMLE.effectiveSize, obs.MCMLE.effectiveSize,
MCMLE.interval, MCMLE.burnin, MCMLE.samplesize.per_theta, MCMLE.samplesize.min,
MCMLE.samplesize, obs.MCMLE.samplesize.per_theta, obs.MCMLE.samplesize.min,
obs.MCMLE.samplesize, obs.MCMLE.interval, obs.MCMLE.burnin, MCMLE.steplength.solver,
MCMLE.last.boost, MCMLE.steplength.esteq, MCMLE.steplength.miss.sample, MCMLE.steplength.min,
MCMLE.effectiveSize.interval_drop, MCMLE.save_intermediates, MCMLE.nonvar, MCMLE.nonident,
MCMLE.nonident.tol, SA.phase1_n, SA.initial_gain, SA.nsubphases, SA.min_iterations,
SA.max_iterations, SA.phase3_n, SA.interval, SA.burnin, SA.samplesize, CD.samplesize.per_theta,
obs.CD.samplesize.per_theta, CD.nsteps, CD.multiplicity, CD.nsteps.obs, CD.multiplicity.obs,
CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method, CD.dampening,
CD.dampening.min.ess, CD.dampening.level, CD.steplength.margin, CD.steplength,
CD.adaptive.epsilon, CD.steplength.esteq, CD.steplength.miss.sample, CD.steplength.min,
CD.steplength.parallel, CD.steplength.solver, loglik, term.options, seed, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.ergm.bridge bridge.nsteps, bridge.target.se, bridge.bidirectional, drop,
MCMC.burnin, MCMC.burnin.between, MCMC.interval, MCMC.samplesize, obs.MCMC.burnin,
obs.MCMC.burnin.between, obs.MCMC.interval, obs.MCMC.samplesize, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args, MCMC.maxedges,
MCMC.packagenames, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT, ...

control.ergm.godfather term.options

snctrl 53

control.ergm3 drop, init, init.method, main.method, force.main, main.hessian, checkpoint,
resume, MPLE.samplesize, init.MPLE.samplesize, MPLE.type, MPLE.maxit, MPLE.nonvar,
MPLE.nonident, MPLE.nonident.tol, MPLE.covariance.samplesize, MPLE.covariance.method,
MPLE.covariance.sim.burnin, MPLE.covariance.sim.interval, MPLE.check, MPLE.constraints.ignore,
MCMC.prop, MCMC.prop.weights, MCMC.prop.args, MCMC.interval, MCMC.burnin, MCMC.samplesize,
MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.burnin.pval,
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max, MCMC.effectiveSize.burnin.nmin,
MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max, MCMC.return.stats, MCMC.runtime.traceplot, MCMC.maxedges,
MCMC.addto.se, MCMC.packagenames, SAN.maxit, SAN.nsteps.times, SAN, MCMLE.termination,
MCMLE.maxit, MCMLE.conv.min.pval, MCMLE.confidence, MCMLE.confidence.boost, MCMLE.confidence.boost.threshold,
MCMLE.confidence.boost.lag, MCMLE.NR.maxit, MCMLE.NR.reltol, obs.MCMC.mul, obs.MCMC.samplesize.mul,
obs.MCMC.samplesize, obs.MCMC.effectiveSize, obs.MCMC.interval.mul, obs.MCMC.interval,
obs.MCMC.burnin.mul, obs.MCMC.burnin, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args,
obs.MCMC.impute.min_informative, obs.MCMC.impute.default_density, MCMLE.min.depfac,
MCMLE.sampsize.boost.pow, MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac, MCMLE.metric,
MCMLE.method, MCMLE.dampening, MCMLE.dampening.min.ess, MCMLE.dampening.level,
MCMLE.steplength.margin, MCMLE.steplength, MCMLE.steplength.parallel, MCMLE.sequential,
MCMLE.density.guard.min, MCMLE.density.guard, MCMLE.effectiveSize, obs.MCMLE.effectiveSize,
MCMLE.interval, MCMLE.burnin, MCMLE.samplesize.per_theta, MCMLE.samplesize.min,
MCMLE.samplesize, obs.MCMLE.samplesize.per_theta, obs.MCMLE.samplesize.min,
obs.MCMLE.samplesize, obs.MCMLE.interval, obs.MCMLE.burnin, MCMLE.steplength.solver,
MCMLE.last.boost, MCMLE.steplength.esteq, MCMLE.steplength.miss.sample, MCMLE.steplength.min,
MCMLE.effectiveSize.interval_drop, MCMLE.save_intermediates, MCMLE.nonvar, MCMLE.nonident,
MCMLE.nonident.tol, SA.phase1_n, SA.initial_gain, SA.nsubphases, SA.min_iterations,
SA.max_iterations, SA.phase3_n, SA.interval, SA.burnin, SA.samplesize, CD.samplesize.per_theta,
obs.CD.samplesize.per_theta, CD.nsteps, CD.multiplicity, CD.nsteps.obs, CD.multiplicity.obs,
CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method, CD.dampening,
CD.dampening.min.ess, CD.dampening.level, CD.steplength.margin, CD.steplength,
CD.adaptive.epsilon, CD.steplength.esteq, CD.steplength.miss.sample, CD.steplength.min,
CD.steplength.parallel, CD.steplength.solver, loglik, term.options, seed, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.gof.ergm nsim, MCMC.burnin, MCMC.interval, MCMC.batch, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.maxedges, MCMC.packagenames, MCMC.runtime.traceplot, network.output,
seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT

control.gof.formula nsim, MCMC.burnin, MCMC.interval, MCMC.batch, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.maxedges, MCMC.packagenames, MCMC.runtime.traceplot, network.output,
seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT

control.logLik.ergm bridge.nsteps, bridge.target.se, bridge.bidirectional, drop,
MCMC.burnin, MCMC.interval, MCMC.samplesize, obs.MCMC.samplesize, obs.MCMC.interval,
obs.MCMC.burnin, MCMC.prop, MCMC.prop.weights, MCMC.prop.args, obs.MCMC.prop,
obs.MCMC.prop.weights, obs.MCMC.prop.args, MCMC.maxedges, MCMC.packagenames,
term.options, seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT,
...

control.san SAN.maxit, SAN.tau, SAN.invcov, SAN.invcov.diag, SAN.nsteps.alloc, SAN.nsteps,
SAN.samplesize, SAN.prop, SAN.prop.weights, SAN.prop.args, SAN.packagenames,
SAN.ignore.finite.offsets, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT

54 stergm

control.simulate MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights, MCMC.prop.args,
MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.ergm MCMC.burnin, MCMC.interval, MCMC.scale, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.formula MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.formula.ergm MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC.packagenames, MCMC.runtime.traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

See Also

statnet.common::snctrl()

stergm Separable Temporal Exponential Family Random Graph Models
(Deprecated)

Description

stergm() fits Separable Temporal ERGMs’ (STERGMs) Conditional MLE (CMLE) (Krivitsky and
Handcock, 2014) and Equilibrium Generalized Method of Moments Estimator (EGMME) (Krivit-
sky, 2009). This function is deprecated in favor of tergm(), whose special case it is, and may be
removed in a future version.

stergm 55

Usage

stergm(
nw,
formation,
dissolution,
constraints = ~.,
estimate,
times = NULL,
offset.coef.form = NULL,
offset.coef.diss = NULL,
targets = NULL,
target.stats = NULL,
eval.loglik = NVL(getOption("tergm.eval.loglik"), getOption("ergm.eval.loglik")),
control = control.stergm(),
verbose = FALSE,
...,
SAN.offsets = NULL

)

Arguments

nw A network object (for EGMME); or networkDynamic object, a network.list
object, or a list containing networks (for CMLE and CMPLE).
stergm understands the lasttoggle "API".

formation, dissolution
One-sided ergm()-style formulas for the formation and dissolution models, re-
spectively. In stergm, the dissolution formula is parameterized in terms of tie
persistence: negative coefficients imply lower rates of persistence and postive
coefficients imply higher rates. The dissolution effects are simply the negation
of these coefficients.

constraints A formula specifying one or more constraints on the support of the distribution
of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-

56 stergm

ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

estimate One of "EGMME" for Equilibrium Generalized Method of Moments Estima-
tion, based on a single network with some temporal information and making
an assumption that it is a product of a STERGM process running to its station-
ary (equilibrium) distribution; "CMLE" for Conditional Maximum Likelihood
Estimation, modeling a transition between two networks, or "CMPLE" for Con-
ditional Maximum PseudoLikelihood Estimation, using MPLE instead of MLE.
CMPLE is extremely inaccurate at this time.

times For CMLE and CMPLE estimation, times or indexes at which the networks
whose transition is to be modeled are observed. Default to c(0,1) if nw is a
networkDynamic and to 1:length(nw) (all transitions) if nw is a network.list
or a list. Unused for EGMME. Note that at this time, the selected time points
will be treated as temporally adjacent. Irregularly spaced time series are not
supported at this time.

offset.coef.form

Numeric vector to specify offset formation parameters.
offset.coef.diss

Numeric vector to specify offset dissolution parameters.

targets One-sided ergm()-style formula specifying statistics whose moments are used
for the EGMME. Unused for CMLE and CMPLE. Targets is required for EGMME
estimation. It may contain any valid ergm terms. Any offset terms are used
only during the preliminary SAN run; they are removed automatically for the
EGMME proper. If targets is specified as a character (one of "formation"
and "dissolution") then the function .extract.fd.formulae() is used to
determine the corresponding formula; the user should be aware of its behavior
and limitations.

target.stats A vector specifying the values of the targets statistics that EGMME will try to
match. Defaults to the statistics of nw. Unused for CMLE and CMPLE.

eval.loglik Whether or not to calculate the log-likelihood of a CMLE STERGM fit. See
ergm() for details. Can be set globally via option(tergm.eval.loglik=...),
falling back to getOption("ergm.eval.loglik") if not set.

control A list of control parameters for algorithm tuning. Constructed using control.stergm().
Remapped to control.tergm().

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Additional arguments, to be passed to lower-level functions.

SAN.offsets Offset coefficients (if any) to use during the SAN run.

Details

The stergm function uses a pair of formulas, formation and dissolution to model tie-dynamics.
The dissolution formula, however, is parameterized in terms of tie persistence: negative coefficients
imply lower rates of persistence and postive coefficients imply higher rates. The dissolution effects

summary_formula.networkDynamic 57

are simply the negation of these coefficients, but the discrepancy between the terminology and
interpretation has always been unfortunate, and we have fixed this in the new tergm function.

If you are making the transition from old stergm to new tergm, note that the dissolution formula
in stergm maps to the new Persist() operator in the tergm function, NOT the Diss() operator.

Value

stergm() returns an object of class tergm; see tergm() for details and methods.

References

Krivitsky P.N. and Handcock M.S. (2014) A Separable Model for Dynamic Networks. Journal of
the Royal Statistical Society, Series B, 76(1): 29-46. doi:10.1111/rssb.12014

Krivitsky, P.N. (2012). Modeling of Dynamic Networks based on Egocentric Data with Durational
Information. Pennsylvania State University Department of Statistics Technical Report, 2012(2012-
01). https://web.archive.org/web/20170830053722/https://stat.psu.edu/research/technical-report-files/
2012-technical-reports/TR1201A.pdf

See Also

ergm(), network, %v%, %n%, ergmTerm

summary_formula.networkDynamic

Calculation of networkDynamic statistics.

Description

A method for summary_formula() to calculate the specified statistics for an observed networkDynamic
at the specified time point(s). See ergmTerm for more information on the statistics that may be spec-
ified.

Usage

S3 method for class 'networkDynamic'
summary_formula(object, at, ..., basis = NULL)

Arguments

object An formula object with a networkDynamic as its LHS. (See summary_formula()
for more details.)

at A vector of time points at which to calculate the statistics.

... Further arguments passed to or used by methods.

basis An optional networkDynamic object relative to which the statistics should be
calculated.

https://doi.org/10.1111/rssb.12014
https://web.archive.org/web/20170830053722/https://stat.psu.edu/research/technical-report-files/2012-technical-reports/TR1201A.pdf
https://web.archive.org/web/20170830053722/https://stat.psu.edu/research/technical-report-files/2012-technical-reports/TR1201A.pdf

58 tergm

Value

A matrix with length(at) rows, one for each time point in at, and columns for each term of the
formula, containing the corresponding statistics measured on the network.

See Also

ergm(), networkDynamic, ergmTerm, summary.formula()

Examples

create a toy dynamic network
my.nD <- network.initialize(100,directed=FALSE)
activate.vertices(my.nD, onset=0, terminus = 10)
add.edges.active(my.nD,tail=1:2,head=2:3,onset=5,terminus=8)

use a summary formula to display number of isolates and edges
at discrete time points
summary(my.nD~isolates+edges, at=1:10)

tergm Temporal Exponential-Family Random Graph Models

Description

tergm() fits Temporal ERGMs’ (TERGMs) and Separable Temporal ERGMs’ (STERGMs) Con-
ditional MLE (CMLE) (Krivitsky and Handcock, 2010) and Equilibrium Generalized Method of
Moments Estimator (EGMME) (Krivitsky, 2009).

Usage

tergm(
formula,
constraints = ~.,
estimate,
times = NULL,
offset.coef = NULL,
targets = NULL,
target.stats = NULL,
SAN.offsets = NULL,
eval.loglik = NVL(getOption("tergm.eval.loglik"), getOption("ergm.eval.loglik")),
control = control.tergm(),
verbose = FALSE,
...,
basis = eval_lhs.formula(formula)

)

tergm 59

Arguments

formula an ERGM formula.

constraints A formula specifying one or more constraints on the support of the distribution
of the networks being modeled. Multiple constraints may be given, separated
by “+” and “-” operators. See ergmConstraint for the detailed explanation of
their semantics and also for an indexed list of the constraints visible to the ergm
package.
The default is to have no constraints except those provided through the ergmlhs
API.
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the MCMC.prop.args argument to the relevant control func-
tion, or by giving it on the LHS of the hints formula to MCMC.prop argument to
the control function. This will override the one chosen automatically.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-
ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

estimate One of "EGMME" for Equilibrium Generalized Method of Moments Estima-
tion, based on a single network with some temporal information and making
an assumption that it is a product of a TERGM process running to its station-
ary (equilibrium) distribution; "CMLE" for Conditional Maximum Likelihood
Estimation, modeling a transition between two networks, or "CMPLE" for Con-
ditional Maximum PseudoLikelihood Estimation, using MPLE instead of MLE.
CMPLE is extremely inaccurate at this time.

times For CMLE and CMPLE estimation, times or indexes at which the networks
whose transition is to be modeled are observed. This argument is mandatory
if nw is a networkDynamic and defaults to 1:length(nw) (all transitions) if nw
is a network.list or a list. Ignored when estimating EGMME or if LHS is
already a NetSeries. Note that at this time, the selected time points will be
treated as temporally adjacent. Irregluarly spaced time series are not supported
at this time.

offset.coef Numeric vector to specify offset parameters.

targets One-sided ergm()-style formula specifying statistics whose moments are used
for the EGMME. Unused for CMLE and CMPLE. Targets is required for EGMME
estimation. It may contain any valid ergm terms. Any offset terms are used
only during the preliminary SAN run; they are removed automatically for the
EGMME proper. If targets is specified as a character (one of "formation"
and "dissolution") then the function .extract.fd.formulae() is used to
determine the corresponding formula; the user should be aware of its behavior
and limitations.

target.stats A vector specifying the values of the targets statistics that EGMME will try to
match. Defaults to the statistics of nw. Unused for CMLE and CMPLE.

60 tergm

SAN.offsets Offset coefficients (if any) to use during the SAN run.

eval.loglik Whether or not to calculate the log-likelihood of a CMLE TERGM fit. See
ergm() for details. Can be set globally via option(tergm.eval.loglik=...),
falling back to getOption("ergm.eval.loglik") if not set.

control A list of control parameters for algorithm tuning. Constructed using control.tergm().

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

... Additional arguments, to be passed to lower-level functions.

basis optional network data overriding the left hand side of formula

Value

tergm() returns an object of class tergm that inherits from ergm and has the usual methods (coef.ergm(),
summary.ergm(), mcmc.diagnostics(), etc.) implemented for it. Note that gof() only works for
the CMLE method.

References

Krackhardt, D and Handcock, MS (2006) Heider vs Simmel: Emergent features in dynamic struc-
tures. ICML Workshop on Statistical Network Analysis. Springer, Berlin, Heidelberg, 2006.

Hanneke S, Fu W, and Xing EP (2010). Discrete Temporal Models of Social Networks. Electronic
Journal of Statistics, 2010, 4, 585-605. doi:10.1214/09EJS548

Krivitsky P.N. and Handcock M.S. (2014) A Separable Model for Dynamic Networks. Journal of
the Royal Statistical Society, Series B, 76(1): 29-46. doi:10.1111/rssb.12014

Krivitsky, P.N. (2012). Modeling of Dynamic Networks based on Egocentric Data with Durational
Information. Pennsylvania State University Department of Statistics Technical Report, 2012(2012-
01). https://arxiv.org/abs/2203.06866

See Also

network, networkDynamic, and NetSeries() for the data structures, ergm() and ergmTerm for
model specification, package vignette browseVignettes(package='tergm') for a short demon-
stration, the Statnet web site https://statnet.org/workshop-tergm/ for a tutorial

Examples

Not run:
EGMME Example
par(ask=FALSE)
n<-30
g0<-network.initialize(n,dir=FALSE)

edges, degree(1), mean.age
target.stats<-c(n*1/2, n*0.6, 20)

dynfit<-tergm(g0 ~ Form(~edges + degree(1)) + Diss(~edges),

https://doi.org/10.1214/09-EJS548
https://doi.org/10.1111/rssb.12014
https://arxiv.org/abs/2203.06866
https://statnet.org/workshop-tergm/

tergm.godfather 61

targets = ~edges+degree(1)+mean.age,
target.stats=target.stats, estimate="EGMME",
control=control.tergm(SA.plot.progress=TRUE))

par(ask=TRUE)
mcmc.diagnostics(dynfit)
summary(dynfit)

End(Not run)

CMLE Example
data(samplk)

Fit a transition from Time 1 to Time 2
samplk12 <- tergm(list(samplk1, samplk2)~

Form(~edges+mutual+transitiveties+cyclicalties)+
Diss(~edges+mutual+transitiveties+cyclicalties),
estimate="CMLE")

mcmc.diagnostics(samplk12)
summary(samplk12)

samplk12.gof <- gof(samplk12)

samplk12.gof

plot(samplk12.gof)

plot(samplk12.gof, plotlogodds=TRUE)

Fit a transition from Time 1 to Time 2 and from Time 2 to Time 3 jointly
samplk123 <- tergm(list(samplk1, samplk2, samplk3)~

Form(~edges+mutual+transitiveties+cyclicalties)+
Diss(~edges+mutual+transitiveties+cyclicalties),
estimate="CMLE")

mcmc.diagnostics(samplk123)
summary(samplk123)

tergm.godfather A function to apply a given series of changes to a network.

Description

Gives the network a series of timed proposals it can’t refuse. Returns the statistics of the network,
and, optionally, the final network.

62 tergm.godfather

Usage

tergm.godfather(
formula,
changes = NULL,
toggles = changes[, -4, drop = FALSE],
start = NULL,
end = NULL,
end.network = FALSE,
stats.start = FALSE,
verbose = FALSE,
control = control.tergm.godfather()

)

Arguments

formula An summary.formula()-style formula, with either a network or a networkDynamic
as the LHS and statistics to be computed on the RHS. If LHS is a networkDynamic,
it will be used to derive the changes to the network whose statistics are wanted.
Otherwise, either changes or toggles must be specified, and the LHS network
will be used as the starting network.

changes A matrix with four columns: time, tail, head, and new value, describing the
changes to be made. Can only be used if LHS of formula is not a networkDynamic.

toggles A matrix with three columns: time, tail, and head, giving the dyads which had
changed. Can only be used if LHS of formula is not a networkDynamic.

start Time from which to start applying changes. Note that the first set of changes
will take effect at start + 1. Defaults to the time point 1 before the earliest
change passed.

end Time at which to finish applying changes. Defaults to the last time point at
which a change occurs.

end.network Whether to return the network that results. Defaults to FALSE.

stats.start Whether to return the network statistics at start (before any changes are ap-
plied) as the first row of the statistics matrix. Defaults to FALSE, to produce out-
put similar to that of simulate() for TERGMs when output="stats", where
initial network’s statistics are not returned.

verbose A logical or an integer to control the amount of progress and diagnostic in-
formation to be printed. FALSE/0 produces minimal output, with higher values
producing more detail. Note that very high values (5+) may significantly slow
down processing.

control A control list generated by control.tergm.godfather().

Value

If end.network is FALSE (the default), an mcmc object with the requested network statistics associ-
ated with the network series produced by applying the specified changes. Its mcmc attributes encode
the timing information: so start(out) gives the time point associated with the first row returned,
and end(out) out the last. The "thinning interval" is always 1.

tergm.godfather 63

If end.network is TRUE, return a network object with lasttoggle "extension", representing the
final network, with a matrix of statistics described in the previous paragraph attached to it as an
attr-style attribute "stats".

See Also

simulate.tergm(), simulate_formula.network(), simulate_formula.networkDynamic()

Index

∗ durational
Change-ergmTerm, 6
Cross-ergmTerm, 27
degrange.mean.age-ergmTerm, 28
degree.mean.age-ergmTerm, 29
Diss-ergmTerm, 30
edge.ages-ergmTerm, 31
EdgeAges-ergmTerm, 32
edgecov.ages-ergmTerm, 32
edgecov.mean.age-ergmTerm, 33
edges.ageinterval-ergmTerm, 34
Form-ergmTerm, 35
mean.age-ergmTerm, 38
nodefactor.mean.age-ergmTerm, 40
nodemix.mean.age-ergmTerm, 41
Persist-ergmTerm, 42

∗ dyad-independent
discord-ergmHint, 30

∗ manip
impute.network.list, 36

∗ models
control.simulate.network, 7
control.simulate.tergm, 9
summary_formula.networkDynamic, 57
tergm-package, 3

∗ model
is.durational, 37

∗ operator
Change-ergmTerm, 6
Cross-ergmTerm, 27
Diss-ergmTerm, 30
EdgeAges-ergmTerm, 32
Form-ergmTerm, 35
Persist-ergmTerm, 42

∗ package
tergm-package, 3

.extract.fd.formulae, 5

.extract.fd.formulae(), 13, 21, 44, 48, 56,
59

%n%, 57
%v%, 57

attr(), 50, 51

Change-ergmTerm, 6
coef.ergm(), 60
control.ergm, 52
control.ergm(), 14, 22
control.ergm.bridge, 52
control.ergm.godfather, 52
control.ergm3, 53
control.gof.ergm, 53
control.gof.formula, 53
control.logLik.ergm, 53
control.san, 53
control.san(), 15, 23
control.simulate, 54
control.simulate.ergm, 54
control.simulate.formula, 54
control.simulate.formula.ergm, 54
control.simulate.formula.tergm

(control.simulate.tergm), 9
control.simulate.formula.tergm(), 45,

49
control.simulate.network, 7
control.simulate.network(), 45, 49
control.simulate.stergm

(control.simulate.network), 7
control.simulate.stergm(), 19, 49
control.simulate.tergm, 9
control.simulate.tergm(), 26, 49
control.stergm, 11
control.stergm(), 9, 56
control.tergm, 19
control.tergm(), 11, 19, 56, 60
control.tergm.godfather, 26
control.tergm.godfather(), 62
control$init.method, 13, 21
Cross-ergmTerm, 27

64

INDEX 65

degrange.mean.age-ergmTerm, 28
degree.mean.age-ergmTerm, 29
discord-ergmConstraint

(discord-ergmHint), 30
discord-ergmHint, 30
Diss-ergmTerm, 30

edge.ages-ergmTerm, 31
EdgeAges-ergmTerm, 32
edgecov.ages-ergmTerm, 32
edgecov.mean.age, 33
edgecov.mean.age-ergmTerm, 33
edges.ageinterval-ergmTerm, 34
end, 62
ergm, 60
ergm(), 7, 15, 23, 27, 30, 35, 37, 42, 44, 55–60
ergm_model, 37, 38
ergm_proposal_table(), 8, 10
ergm_state, 37, 38, 51
ergmConstraint, 44, 48, 55, 59
ergmHint, 30
ergmlhs, 44, 48, 55, 59
ergmTerm, 4, 7, 27–29, 31–35, 39, 41, 42, 57,

58, 60

Form-ergmTerm, 35
formula, 57

gof(), 60

impute.network.list, 36
impute.network.list(), 14, 22, 39
InitErgmConstraint.discord

(discord-ergmHint), 30
InitErgmTerm.Change (Change-ergmTerm), 6
InitErgmTerm.Cross (Cross-ergmTerm), 27
InitErgmTerm.degrange.mean.age

(degrange.mean.age-ergmTerm),
28

InitErgmTerm.degree.mean.age
(degree.mean.age-ergmTerm), 29

InitErgmTerm.Diss (Diss-ergmTerm), 30
InitErgmTerm.edge.ages

(edge.ages-ergmTerm), 31
InitErgmTerm.EdgeAges

(EdgeAges-ergmTerm), 32
InitErgmTerm.edgecov.ages

(edgecov.ages-ergmTerm), 32
InitErgmTerm.edgecov.mean.age

(edgecov.mean.age-ergmTerm), 33

InitErgmTerm.edges.ageinterval
(edges.ageinterval-ergmTerm),
34

InitErgmTerm.Form (Form-ergmTerm), 35
InitErgmTerm.mean.age

(mean.age-ergmTerm), 38
InitErgmTerm.nodefactor.mean.age

(nodefactor.mean.age-ergmTerm),
40

InitErgmTerm.nodemix.mean.age
(nodemix.mean.age-ergmTerm), 41

InitErgmTerm.Persist
(Persist-ergmTerm), 42

is.durational, 37
is.na(), 37

lasttoggle, 38, 38, 48, 50, 51, 55, 63
list, 55, 56, 59

mcmc, 50, 62
mcmc.diagnostics(), 18, 25, 60
mcmc.list, 50
mean.age, 31
mean.age-ergmTerm, 38

N(), 7, 27, 30, 35, 42
net.obs.period, 50
NetSeries, 39, 59
NetSeries(), 7, 27, 30, 35, 42, 60
network, 36–38, 44, 50, 51, 55, 57, 60, 62, 63
network.list, 36, 50, 51, 55, 56, 59
networkDynamic, 39, 44, 48–50, 55–60, 62
nodefactor.mean.age-ergmTerm, 40
nodemix.mean.age-ergmTerm, 41

pdf(), 15, 23
Persist-ergmTerm, 42
persistent.ids, 50

san(), 15, 23
set.MT_terms(), 18, 26
set.seed(), 18, 25, 44, 48
simulate(), 9, 11, 46, 62
simulate.formula(), 9, 11
simulate.network, 43
simulate.networkDynamic

(simulate.network), 43
simulate.stergm (simulate.network), 43
simulate.stergm(), 9

66 INDEX

simulate.tergm, 46
simulate.tergm(), 9, 11, 19, 26, 43, 45, 63
simulate_formula.network

(simulate.tergm), 46
simulate_formula.network(), 63
simulate_formula.networkDynamic

(simulate.tergm), 46
simulate_formula.networkDynamic(), 63
snctrl, 51
start, 62
statnet.common::snctrl(), 54
stergm, 54
stergm(), 4, 9, 13, 14, 18, 19, 54, 57
summary.ergm(), 60
summary.formula

(summary_formula.networkDynamic),
57

summary.formula(), 58, 62
summary_formula(), 57
summary_formula.networkDynamic, 57

tergm, 48, 50, 57, 58, 60
tergm(), 3, 4, 11, 19, 21, 22, 26, 46, 54, 57,

58, 60
tergm-package, 3
tergm.godfather, 61
tergm.godfather(), 26

	tergm-package
	.extract.fd.formulae
	Change-ergmTerm
	control.simulate.network
	control.simulate.tergm
	control.stergm
	control.tergm
	control.tergm.godfather
	Cross-ergmTerm
	degrange.mean.age-ergmTerm
	degree.mean.age-ergmTerm
	discord-ergmHint
	Diss-ergmTerm
	edge.ages-ergmTerm
	EdgeAges-ergmTerm
	edgecov.ages-ergmTerm
	edgecov.mean.age-ergmTerm
	edges.ageinterval-ergmTerm
	Form-ergmTerm
	impute.network.list
	is.durational
	lasttoggle
	mean.age-ergmTerm
	NetSeries
	nodefactor.mean.age-ergmTerm
	nodemix.mean.age-ergmTerm
	Persist-ergmTerm
	simulate.network
	simulate.tergm
	snctrl
	stergm
	summary_formula.networkDynamic
	tergm
	tergm.godfather
	Index

