
Package ‘rvinecopulib’
June 13, 2025

Type Package

Title High Performance Algorithms for Vine Copula Modeling

Version 0.7.3.1.0

Description Provides an interface to 'vinecopulib', a C++ library for vine
copula modeling. The 'rvinecopulib' package implements the core features of the
popular 'VineCopula' package, in particular inference algorithms for both vine
copula and bivariate copula models. Advantages over 'VineCopula' are a sleeker
and more modern API, improved performances, especially in high dimensions,
nonparametric and multi-parameter families, and the ability to model discrete
variables. The 'rvinecopulib' package includes 'vinecopulib' as header-only
C++ library (currently version 0.7.2). Thus users do not need to install
'vinecopulib' itself in order to use 'rvinecopulib'. Since their initial
releases, 'vinecopulib' is licensed under the MIT License, and 'rvinecopulib'
is licensed under the GNU GPL version 3.

License GPL-3 | file LICENSE

Encoding UTF-8

NeedsCompilation yes

Depends R (>= 3.0.2)

Imports assertthat, graphics, grDevices, kde1d (>= 1.1.0), lattice,
Rcpp (>= 0.12.12), stats, utils

Suggests igraph, ggplot2, ggraph, testthat

LinkingTo BH, Rcpp, RcppEigen, RcppThread (>= 2.1.2), wdm (>= 0.2.6),
kde1d (>= 1.1.0)

BugReports https://github.com/vinecopulib/rvinecopulib/issues

URL https://vinecopulib.github.io/rvinecopulib/

RoxygenNote 7.3.2

Author Thomas Nagler [aut, cre],
Thibault Vatter [aut]

Maintainer Thomas Nagler <info@vinecopulib.org>

Repository CRAN

Date/Publication 2025-06-13 12:20:02 UTC

1

https://github.com/vinecopulib/rvinecopulib/issues
https://vinecopulib.github.io/rvinecopulib/

2 as.bicop

Contents
as.bicop . 2
as_rvine_structure . 3
bicop . 5
bicop_dist . 8
bicop_distributions . 9
bicop_predict_and_fitted . 11
emp_cdf . 12
getters . 13
mBICV . 15
pairs_copula_data . 16
par_to_ktau . 17
plot.bicop_dist . 17
plot.rvine_structure . 18
plot.vinecop_dist . 19
pseudo_obs . 21
rosenblatt . 22
rvinecopulib . 23
rvine_structure . 25
rvine_structure_sim . 28
truncate_model . 29
vine . 30
vinecop . 32
vinecop_dist . 36
vinecop_distributions . 38
vinecop_predict_and_fitted . 39
vine_distributions . 41
vine_predict_and_fitted . 42

Index 44

as.bicop Convert list to bicop object

Description

Convert list to bicop object

Usage

as.bicop(object, check = TRUE)

Arguments

object a list containing entries for "family", "rotation", "parameters", and "npars".

check whether to check for validity of the family/parameter specification.

as_rvine_structure 3

Value

A bicop object corresponding to the specification in object.

Examples

as.bicop(list(family = "gumbel", rotation = 90, parameters = 2, npars = 1))

as_rvine_structure Coerce various kind of objects to R-vine structures and matrices

Description

as_rvine_structure and as_rvine_matrix are new S3 generics allowing to coerce objects into
R-vine structures and matrices (see rvine_structure() and rvine_matrix()).

Usage

as_rvine_structure(x, ...)

as_rvine_matrix(x, ...)

S3 method for class 'rvine_structure'
as_rvine_structure(x, ..., validate = FALSE)

S3 method for class 'rvine_structure'
as_rvine_matrix(x, ..., validate = FALSE)

S3 method for class 'list'
as_rvine_structure(x, ..., is_natural_order = FALSE)

S3 method for class 'list'
as_rvine_matrix(x, ..., is_natural_order = FALSE)

S3 method for class 'rvine_matrix'
as_rvine_structure(x, ..., validate = FALSE)

S3 method for class 'rvine_matrix'
as_rvine_matrix(x, ..., validate = FALSE)

S3 method for class 'matrix'
as_rvine_structure(x, ..., validate = TRUE)

S3 method for class 'matrix'
as_rvine_matrix(x, ..., validate = TRUE)

4 as_rvine_structure

Arguments

x An object of class rvine_structure, rvine_matrix, matrix or list that can
be coerced into an R-vine structure or R-vine matrix (see Details).

... Other arguments passed on to individual methods.

validate When ‘TRUE“, verifies that the input is a valid rvine-structure (see Details).
You may want to suppress this when you know that you already have a valid
structure and you want to save some time, or to explicitly enable it if you have a
structure that you want to re-check.

is_natural_order

A flag indicating whether the struct_array element of x is assumed to be pro-
vided in natural order already (a structure is in natural order if the anti-diagonal
is 1, .., d from bottom left to top right).

Details

The coercion to rvine_structure and rvine_matrix can be applied to different kind of objects
Currently, rvine_structure, rvine_matrix, matrix and list are supported.

For as_rvine_structure:

• rvine_structure : the main use case is to re-check an object via validate = TRUE.

• rvine_matrix and matrix : allow to coerce matrices into R-vine structures (see rvine_structure()
for more details). The main difference between rvine_matrix and matrix is the nature of
the validity checks.

• list : must contain named elements order and struct_array to be coerced into an R-vine
structure (see rvine_structure() for more details).

For as_rvine_matrix:

• rvine_structure : allow to coerce an rvine_structure into an R-vine matrix (useful e.g.
for printing).

• rvine_matrix: similar to as_rvine_structure for rvine_structure, the main use case is
to re-check an object via validate = TRUE.

• matrix : allow to coerce matrices into R-vine matrices (mainly by checking that the matrix
defines a valid R-vine, see rvine_matrix() for more details).

• list : must contain named elements order and struct_array to be coerced into an R-vine
matrix (see rvine_structure() for more details).

Value

Either an object of class rvine_structure or of class rvine_matrix (see rvine_structure() or
rvine_matrix()).

See Also

rvine_structure rvine_matrix

bicop 5

Examples

R-vine structures can be constructed from the order vector and struct_array
rvine_structure(order = 1:4, struct_array = list(

c(4, 4, 4),
c(3, 3),
2

))

... or a similar list can be coerced into an R-vine structure
as_rvine_structure(list(order = 1:4, struct_array = list(

c(4, 4, 4),
c(3, 3),
2

)))

similarly, standard matrices can be coerced into R-vine structures
mat <- matrix(c(4, 3, 2, 1, 4, 3, 2, 0, 4, 3, 0, 0, 4, 0, 0, 0), 4, 4)
as_rvine_structure(mat)

or truncate and construct the structure
mat[3, 1] <- 0
as_rvine_structure(mat)

throws an error
mat[3, 1] <- 5
try(as_rvine_structure(mat))

bicop Fit and select bivariate copula models

Description

Fit a bivariate copula model for continuous or discrete data. The family can be selected automati-
cally from a vector of options.

Usage

bicop(
data,
var_types = c("c", "c"),
family_set = "all",
par_method = "mle",
nonpar_method = "quadratic",
mult = 1,
selcrit = "aic",
weights = numeric(),
psi0 = 0.9,
presel = TRUE,

6 bicop

allow_rotations = TRUE,
keep_data = FALSE,
cores = 1

)

Arguments

data a matrix or data.frame with at least two columns, containing the (pseudo-)observations
for the two variables (copula data should have approximately uniform margins).
More columns are required for discrete models, see Details.

var_types variable types, a length 2 vector; e.g., c("c", "c") for both continuous (de-
fault), or c("c", "d") for first variable continuous and second discrete.

family_set a character vector of families; see Details for additional options.

par_method the estimation method for parametric models, either "mle" for maximum likeli-
hood or "itau" for inversion of Kendall’s tau (only available for one-parameter
families and "t".

nonpar_method the estimation method for nonparametric models, either "constant" for the
standard transformation estimator, or "linear"/"quadratic" for the local-likelihood
approximations of order one/two.

mult multiplier for the smoothing parameters of nonparametric families. Values larger
than 1 make the estimate more smooth, values less than 1 less smooth.

selcrit criterion for family selection, either "loglik", "aic", "bic", "mbic". For
vinecop() there is the additional option "mbicv".

weights optional vector of weights for each observation.

psi0 see mBICV().

presel whether the family set should be thinned out according to symmetry character-
istics of the data.

allow_rotations

whether to allow rotations of the copula.

keep_data whether the data should be stored (necessary for using fitted()).

cores number of cores to use; if more than 1, estimation for multiple families is done
in parallel.

Details

If there are missing data (i.e., NA entries), incomplete observations are discarded before fitting the
copula.

Discrete variables:
When at least one variable is discrete, more than two columns are required for data: the first n×2
block contains realizations of FX1(x1), FX2(x2). The second n×2 block contains realizations of
FX1

(x−1), FX2
(x−2). The minus indicates a left-sided limit of the cdf. For, e.g., an integer-valued

variable, it holds FX1
(x−1) = FX1

(x1 − 1). For continuous variables the left limit and the cdf
itself coincide. Respective columns can be omitted in the second block.

bicop 7

Family collections:
The family_set argument accepts all families in bicop_dist() plus the following convenience
definitions:

• "all" contains all the families,
• "parametric" contains the parametric families (all except "tll"),
• "nonparametric" contains the nonparametric families ("indep" and "tll")
• "onepar" contains the parametric families with a single parameter,

("gaussian", "clayton", "gumbel", "frank", and "joe"),
• "twopar" contains the parametric families with two parameters, ("t", "bb1", "bb6", "bb7",

and "bb8"),
• "threepar" contains the paramtric families with three parameters, ("tawn"),
• "elliptical" contains the elliptical families,
• "archimedean" contains the archimedean families,
• "ev" contains the extreme-value families,
• "BB" contains the BB families,
• "itau" families for which estimation by Kendall’s tau inversion is available ("indep","gaussian",
"t","clayton", "gumbel", "frank", "joe").

Value

An object inheriting from classes bicop and bicop_dist . In addition to the entries contained in
bicop_dist(), objects from the bicop class contain:

• data (optionally, if keep_data = TRUE was used), the dataset that was passed to bicop().
• controls, a list with the set of fit controls that was passed to bicop().
• loglik the log-likelihood.
• nobs, an integer with the number of observations that was used to fit the model.

See Also

bicop_dist(), plot.bicop(), contour.bicop(), dbicop(), pbicop(), hbicop(), rbicop()

Examples

fitting a continuous model from simulated data
u <- rbicop(100, "clayton", 90, 3)
fit <- bicop(u, family_set = "par")
summary(fit)

compare fit with true model
contour(fit)
contour(bicop_dist("clayton", 90, 3), col = 2, add = TRUE)

fit a model from discrete data
x_disc <- qpois(u, 1) # transform to Poisson margins
plot(x_disc)
udisc <- cbind(ppois(x_disc, 1), ppois(x_disc - 1, 1))
fit_disc <- bicop(udisc, var_types = c("d", "d"))
summary(fit_disc)

8 bicop_dist

bicop_dist Bivariate copula models

Description

Create custom bivariate copula models by specifying the family, rotation, parameters, and variable
types.

Usage

bicop_dist(
family = "indep",
rotation = 0,
parameters = numeric(0),
var_types = c("c", "c")

)

Arguments

family the copula family, a string containing the family name (see Details for all possi-
ble families).

rotation the rotation of the copula, one of 0, 90, 180, 270.

parameters a vector or matrix of copula parameters.

var_types variable types, a length 2 vector; e.g., c("c", "c") for both continuous (de-
fault), or c("c", "d") for first variable continuous and second discrete.

Details

Implemented families:

type name name in R
- Independence "indep"
Elliptical Gaussian "gaussian"
" Student t "t"
Archimedean Clayton "clayton"
" Gumbel "gumbel"
" Frank "frank"
" Joe "joe"
" Clayton-Gumbel (BB1) "bb1"
" Joe-Gumbel (BB6) "bb6"
" Joe-Clayton (BB7) "bb7"
" Joe-Frank (BB8) "bb8"
Extreme-value Tawn "tawn"
Nonparametric Transformation kernel "tll"

bicop_distributions 9

Value

An object of class bicop_dist, i.e., a list containing:

• family, a character indicating the copula family.

• rotation, an integer indicating the rotation (i.e., either 0, 90, 180, or 270).

• parameters, a numeric vector or matrix of parameters.

• npars, a numeric with the (effective) number of parameters.

• var_types, the variable types.

See Also

bicop_dist(), plot.bicop(), contour.bicop(), dbicop(), pbicop(), hbicop(), rbicop()

Examples

Clayton 90° copula with parameter 3
cop <- bicop_dist("clayton", 90, 3)
cop
str(cop)

visualization
plot(cop)
contour(cop)
plot(rbicop(200, cop))

BB8 copula model for discrete data
cop_disc <- bicop_dist("bb8", 0, c(2, 0.5), var_types = c("d", "d"))
cop_disc

bicop_distributions Bivariate copula distributions

Description

Density, distribution function, random generation and h-functions (with their inverses) for the bi-
variate copula distribution.

Usage

dbicop(u, family, rotation, parameters, var_types = c("c", "c"))

pbicop(u, family, rotation, parameters, var_types = c("c", "c"))

rbicop(n, family, rotation, parameters, qrng = FALSE)

hbicop(

10 bicop_distributions

u,
cond_var,
family,
rotation,
parameters,
inverse = FALSE,
var_types = c("c", "c")

)

Arguments

u evaluation points, a matrix with at least two columns, see Details.

family the copula family, a string containing the family name (see bicop for all possible
families).

rotation the rotation of the copula, one of 0, 90, 180, 270.

parameters a vector or matrix of copula parameters.

var_types variable types, a length 2 vector; e.g., c("c", "c") for both continuous (de-
fault), or c("c", "d") for first variable continuous and second discrete.

n number of observations. If ‘length(n) > 1“, the length is taken to be the number
required.

qrng if TRUE, generates quasi-random numbers using the bivariate Generalized Halton
sequence (default qrng = FALSE).

cond_var either 1 or 2; cond_var = 1 conditions on the first variable, cond_var = 2 on the
second.

inverse whether to compute the h-function or its inverse.

Details

See bicop for the various implemented copula families.

The copula density is defined as joint density divided by marginal densities, irrespective of variable
types.

H-functions (hbicop()) are conditional distributions derived from a copula. If C(u, v) = P (U ≤
u, V ≤ v) is a copula, then

h1(u, v) = P (V ≤ v|U = u) = ∂C(u, v)/∂u,

h2(u, v) = P (U ≤ u|V = v) = ∂C(u, v)/∂v.

In other words, the H-function number refers to the conditioning variable. When inverting H-
functions, the inverse is then taken with respect to the other variable, that is v when cond_var = 1
and u when cond_var = 2.

Discrete variables:
When at least one variable is discrete, more than two columns are required for u: the first n × 2
block contains realizations of FX1(x1), FX2(x2). The second n×2 block contains realizations of
FX1

(x−1), FX2
(x−2). The minus indicates a left-sided limit of the cdf. For, e.g., an integer-valued

variable, it holds FX1
(x−1) = FX1

(x1 − 1). For continuous variables the left limit and the cdf
itself coincide. Respective columns can be omitted in the second block.

bicop_predict_and_fitted 11

Value

dbicop() gives the density, pbicop() gives the distribution function, rbicop() generates random
deviates, and hbicop() gives the h-functions (and their inverses).

The length of the result is determined by n for rbicop(), and the number of rows in u for the other
functions.

The numerical arguments other than n are recycled to the length of the result.

Note

The functions can optionally be used with a bicop_dist object in place of the family argument, e.g.,
dbicop(c(0.1, 0.5), bicop_dist("indep")) or hbicop(c(0.1, 0.5), 2, bicop_dist("indep")).

See Also

bicop_dist(), bicop()

Examples

evaluate the copula density
dbicop(c(0.1, 0.2), "clay", 90, 3)
dbicop(c(0.1, 0.2), bicop_dist("clay", 90, 3))

evaluate the copula cdf
pbicop(c(0.1, 0.2), "clay", 90, 3)

simulate data
plot(rbicop(500, "clay", 90, 3))

h-functions
joe_cop <- bicop_dist("joe", 0, 3)
h_1(0.1, 0.2)
hbicop(c(0.1, 0.2), 1, "bb8", 0, c(2, 0.5))
h_2^{-1}(0.1, 0.2)
hbicop(c(0.1, 0.2), 2, joe_cop, inverse = TRUE)

mixed discrete and continuous data
x <- cbind(rpois(10, 1), rnorm(10, 1))
u <- cbind(ppois(x[, 1], 1), pnorm(x[, 2]), ppois(x[, 1] - 1, 1))
pbicop(u, "clay", 90, 3, var_types = c("d", "c"))

bicop_predict_and_fitted

Predictions and fitted values for a bivariate copula model

Description

Predictions of the density, distribution function, h-functions (with their inverses) for a bivariate
copula model.

12 emp_cdf

Usage

S3 method for class 'bicop_dist'
predict(object, newdata, what = "pdf", ...)

S3 method for class 'bicop'
fitted(object, what = "pdf", ...)

Arguments

object a bicop object.

newdata points where the fit shall be evaluated.

what what to predict, one of "pdf", "cdf", "hfunc1", "hfunc2", "hinv1", "hinv2".

... unused.

Details

fitted() can only be called if the model was fit with the keep_data = TRUE option.

Discrete variables:
When at least one variable is discrete, more than two columns are required for newdata: the
first n × 2 block contains realizations of FX1

(x1), FX2
(x2). The second n × 2 block contains

realizations of FX1
(x−1), FX2

(x−2). The minus indicates a left-sided limit of the cdf. For, e.g., an
integer-valued variable, it holds FX1(x

−
1) = FX1(x1 − 1). For continuous variables the left limit

and the cdf itself coincide. Respective columns can be omitted in the second block.

Value

fitted() and logLik() have return values similar to dbicop(), pbicop(), and hbicop().

Examples

Simulate and fit a bivariate copula model
u <- rbicop(500, "gauss", 0, 0.5)
fit <- bicop(u, family = "par", keep_data = TRUE)

Predictions
all.equal(predict(fit, u, "hfunc1"), fitted(fit, "hfunc1"),

check.environment = FALSE)

emp_cdf Corrected Empirical CDF

Description

The empirical CDF with tail correction, ensuring that its output is never 0 or 1.

getters 13

Usage

emp_cdf(x)

Arguments

x numeric vector of observations

Details

The corrected empirical CDF is defined as

Fn(x) =
1

n+ 1
max

{
1,

n∑
i=1

1(Xi ≤ x)

}

Value

A function with signature function(x) that returns Fn(x).

Examples

fit ECDF on simulated data
x <- rnorm(100)
cdf <- emp_cdf(x)

output is bounded away from 0 and 1
cdf(-50)
cdf(50)

getters Extracts components of bicop_dist and vinecop_dist objects

Description

Extracts either the structure matrix (for vinecop_dist only), or pair-copulas, their parameters,
Kendall’s taus, or families (for bicop_dist and vinecop_dist).

Usage

get_structure(object)

get_pair_copula(object, tree = NA, edge = NA)

get_parameters(object, tree = NA, edge = NA)

get_ktau(object, tree = NA, edge = NA)

get_family(object, tree = NA, edge = NA)

14 getters

get_all_pair_copulas(object, trees = NA)

get_all_parameters(object, trees = NA)

get_all_ktaus(object, trees = NA)

get_all_families(object, trees = NA)

Arguments

object a bicop_dist, vinecop_dist or vine_dist object.

tree tree index (not required if object is of class bicop_dist).

edge edge index (not required if object is of class bicop_dist).

trees the trees to extract from object (trees = NA extracts all trees).

Details

#’ The get_structure method (for vinecop_dist or vine_dist objects only) extracts the structure
(see rvine_structure for more details).

The get_matrix method (for vinecop_dist or vine_dist objects only) extracts the structure matrix
(see rvine_structure for more details).

The other get_xyz methods for vinecop_dist or vine_dist objects return the entries correspond-
ing to the pair-copula indexed by its tree and edge. When object is of class bicop_dist, tree
and edge are not required.

• get_pair_copula() = the pair-copula itself (see bicop).

• get_parameters() = the parameters of the pair-copula (i.e., a numeric scalar, vector, or
matrix).

• get_family() = a character for the family (see bicop for implemented families).

• get_ktau() = a numeric scalar with the pair-copula Kendall’s tau.

The get_all_xyz methods (for vinecop_dist or vine_dist objects only) return lists of lists,
with each element corresponding to a tree in trees, and then elements of the sublists correspond to
edges. The returned lists have two additional attributes:

• "d" = the dimension of the model.

• "trees" = the extracted trees.

Value

The structure matrix, or pair-copulas, their parameters, Kendall’s taus, or families.

mBICV 15

Examples

specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(

list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree

)

specify R-vine matrix
mat <- matrix(c(1, 2, 3, 1, 2, 0, 1, 0, 0), 3, 3)

set up vine copula model
vc <- vinecop_dist(pcs, mat)

get the structure
get_structure(vc)
all(get_matrix(vc) == mat)

get pair-copulas
get_pair_copula(vc, 1, 1)
get_all_pair_copulas(vc)
all.equal(get_all_pair_copulas(vc), pcs,

check.attributes = FALSE, check.environment = FALSE)

mBICV Modified vine copula Bayesian information criterion (mBICv)

Description

Calculates the modified vine copula Bayesian information criterion.

Usage

mBICV(object, psi0 = 0.9, newdata = NULL)

Arguments

object a fitted vinecop object.

psi0 baseline prior probability of a non-independence copula.

newdata optional; a new data set.

Details

The modified vine copula Bayesian information criterion (mBICv) is defined as

BIC = −2loglik + νlog(n)− 2

d−1∑
t=1

(qtlog(ψ
t
0)− (d− t− qt)log(1− ψt

0))

16 pairs_copula_data

where loglik is the log-likelihood and ν is the (effective) number of parameters of the model, t is
the tree level ψ0 is the prior probability of having a non-independence copula and qt is the number
of non-independence copulas in tree t. The mBICv is a consistent model selection criterion for
parametric sparse vine copula models.

References

Nagler, T., Bumann, C., Czado, C. (2019). Model selection for sparse high-dimensional vine cop-
ulas with application to portfolio risk. Journal of Multivariate Analysis, in press (http://arxiv.
org/pdf/1801.09739)

Examples

u <- sapply(1:5, function(i) runif(50))
fit <- vinecop(u, family = "par", keep_data = TRUE)
mBICV(fit, 0.9) # with a 0.9 prior probability of a non-independence copula
mBICV(fit, 0.1) # with a 0.1 prior probability of a non-independence copula

pairs_copula_data Exploratory pairs plot for copula data

Description

This function provides pair plots for copula data. It shows bivariate contour plots on the lower
panel, scatter plots and correlations on the upper panel and histograms on the diagonal panel.

Usage

pairs_copula_data(data, main = "", ...)

Arguments

data the data (must lie in the unit hypercube).

main an overall title for the plot.

... other parameters passed to pairs.default(), contour.bicop(), points.default(),
hist.default(), or bicop().

Examples

u <- replicate(3, runif(100))
pairs_copula_data(u)

http://arxiv.org/pdf/1801.09739
http://arxiv.org/pdf/1801.09739

par_to_ktau 17

par_to_ktau Conversion between Kendall’s tau and parameters

Description

Conversion between Kendall’s tau and parameters

Usage

par_to_ktau(family, rotation, parameters)

ktau_to_par(family, tau)

Arguments

family a copula family (see bicop_dist()) or a bicop_dist object.

rotation the rotation of the copula, one of 0, 90, 180, 270.

parameters vector or matrix of copula parameters, not used when family is a bicop_dist
object.

tau Kendall’s τ .

Examples

the following are equivalent
par_to_ktau(bicop_dist("clayton", 0, 3))
par_to_ktau("clayton", 0, 3)

ktau_to_par("clayton", 0.5)
ktau_to_par(bicop_dist("clayton", 0, 3), 0.5)

plot.bicop_dist Plotting tools for bicop_dist and bicop objects

Description

There are several options for plotting bicop_dist objects. The density of a bivariate copula density
can be visualized as surface/perspective or contour plot. Optionally, the density can be coupled with
standard normal margins (default for contour plots).

18 plot.rvine_structure

Usage

S3 method for class 'bicop_dist'
plot(x, type = "surface", margins, size, ...)

S3 method for class 'bicop'
plot(x, type = "surface", margins, size, ...)

S3 method for class 'bicop_dist'
contour(x, margins = "norm", size = 100L, ...)

S3 method for class 'bicop'
contour(x, margins = "norm", size = 100L, ...)

Arguments

x bicop_dist object.

type plot type; either "surface" or "contour".

margins options are: "unif" for the original copula density, "norm" for the transformed
density with standard normal margins, "exp" with standard exponential mar-
gins, and "flexp" with flipped exponential margins. Default is "norm" for type
= "contour", and "unif" for type = "surface".

size integer; the plot is based on values on a size x size grid, default is 100.

... optional arguments passed to graphics::contour() or lattice::wireframe().

See Also

bicop_dist(), graphics::contour(), lattice::wireframe()

Examples

construct bicop_dist object for a student t copula
obj <- bicop_dist(family = "t", rotation = 0, parameters = c(0.7, 4))

plots
plot(obj) # surface plot of copula density
contour(obj) # contour plot with standard normal margins
contour(obj, margins = "unif") # contour plot of copula density

plot.rvine_structure Plotting R-vine structures

Description

Plot one or all trees of an R-vine structure.

plot.vinecop_dist 19

Usage

S3 method for class 'rvine_structure'
plot(x, ...)

S3 method for class 'rvine_matrix'
plot(x, ...)

Arguments

x an rvine_structure or rvine_matrix object.

... passed to plot.vinecop_dist().

Examples

plot(cvine_structure(1:5))
plot(rvine_structure_sim(5))
mat <- rbind(c(1, 1, 1), c(2, 2, 0), c(3, 0, 0))
plot(rvine_matrix(mat))
plot(rvine_matrix_sim(5))

plot.vinecop_dist Plotting vinecop_dist and vinecop objects.

Description

There are two plotting generics for vinecop_dist objects. plot.vinecop_dist plots one or all
trees of a given R-vine copula model. Edges can be labeled with information about the correspond-
ing pair-copula. contour.vinecop_dist produces a matrix of contour plots (using plot.bicop).

Usage

S3 method for class 'vinecop_dist'
plot(x, tree = 1, var_names = "ignore", edge_labels = NULL, ...)

S3 method for class 'vinecop'
plot(x, tree = 1, var_names = "ignore", edge_labels = NULL, ...)

S3 method for class 'vinecop_dist'
contour(x, tree = "ALL", cex.nums = 1, ...)

S3 method for class 'vinecop'
contour(x, tree = "ALL", cex.nums = 1, ...)

20 plot.vinecop_dist

Arguments

x vinecop_dist object.

tree "ALL" or integer vector; specifies which trees are plotted.

var_names integer; specifies how to make use of variable names:

• ‘"ignore"“ = variable names are ignored,
• ‘"use"“ = variable names are used to annotate vertices,
• ‘"legend"“ = uses numbers in plot and adds a legend for variable names,
• ‘"hide"“ = no numbers or names, just the node.

edge_labels character; options are:

• "family" = pair-copula family (see [bicop_dist()]),
• ‘"tau"“ = pair-copula Kendall’s tau
• ‘"family_tau"“ = pair-copula family and Kendall’s tau,
• ‘"pair"“ = the name of the involved variables.

... Unused for plot and passed to contour.bicop for contour.

cex.nums numeric; expansion factor for font of the numbers.

Details

If you want the contour boxes to be perfect squares, the plot height should be 1.25/length(tree)*(d
- min(tree)) times the plot width.

The plot() method returns an object that (among other things) contains the igraph representation
of the graph; see Examples.

Author(s)

Thomas Nagler, Thibault Vatter

See Also

vinecop_dist, plot.bicop

Examples

set up vine copula model
u <- matrix(runif(20 * 10), 20, 10)
vc <- vinecop(u, family = "indep")

plot
plot(vc, tree = c(1, 2))
plot(vc, edge_labels = "pair")

extract igraph representation
plt <- plot(vc, edge_labels = "family_tau")
igr_obj <- get("g", plt$plot_env)[[1]]
igr_obj # print object
igraph::E(igr_obj)$name # extract edge labels

pseudo_obs 21

set up another vine copula model
pcs <- lapply(1:3, function(j) # pair-copulas in tree j

lapply(runif(4 - j), function(cor) bicop_dist("gaussian", 0, cor)))
mat <- rvine_matrix_sim(4)
vc <- vinecop_dist(pcs, mat)

contour plot
contour(vc)

pseudo_obs Pseudo-Observations

Description

Compute the pseudo-observations for the given data matrix.

Usage

pseudo_obs(x, ties_method = "average", lower_tail = TRUE)

Arguments

x vector or matrix random variates to be converted (column wise) to pseudo-
observations.

ties_method similar to ties.method of rank() (only "average", "first" and "random"
currently available).

lower_tail logical which, if ‘FALSE“, returns the pseudo-observations when applying the
empirical marginal survival functions.

Details

Given n realizations xi = (xi1, . . . , xid), i ∈ {1, . . . , n} of a random vector X, the pseudo-
observations are defined via uij = rij/(n + 1) for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, where
rij denotes the rank of xij among all xkj , k ∈ {1, . . . , n}.

The pseudo-observations can thus also be computed by component-wise applying the empirical
distribution functions to the data and scaling the result by n/(n+1). This asymptotically negligible
scaling factor is used to force the variates to fall inside the open unit hypercube, for example, to
avoid problems with density evaluation at the boundaries.

When lower_tail = FALSE, then pseudo_obs() simply returns 1 - pseudo_obs().

Value

a vector of matrix of the same dimension as the input containing the pseudo-observations.

22 rosenblatt

Examples

pseudo-observations for a vector
pseudo_obs(rnorm(10))

pseudo-observations for a matrix
pseudo_obs(cbind(rnorm(10), rnorm(10)))

rosenblatt (Inverse) Rosenblatt transform

Description

The Rosenblatt transform takes data generated from a model and turns it into independent uniform
variates, The inverse Rosenblatt transform computes conditional quantiles and can be used simulate
from a stochastic model, see Details.

Usage

rosenblatt(x, model, cores = 1, randomize_discrete = TRUE)

inverse_rosenblatt(u, model, cores = 1)

Arguments

x matrix of evaluation points; must be in (0, 1)d for copula models.

model a model object; classes currently supported are bicop_dist(), vinecop_dist(),
and vine_dist().

cores if >1, computation is parallelized over cores batches (rows of u).
randomize_discrete

Whether to randomize the transform for discrete variables; see Details.

u matrix of evaluation points; must be in (0, 1)d.

Details

The Rosenblatt transform (Rosenblatt, 1952) U = T (V) of a random vector V = (V1, . . . , Vd) F
is defined as

U1 = F (V1), U2 = F (V2|V1), . . . , Ud = F (Vd|V1, . . . , Vd−1),

where F (vk|v1, . . . , vk−1) is the conditional distribution of Vk given V1 . . . , Vk−1, k = 2, . . . , d.
The vector U = (U1, . . . , Ud) then contains independent standard uniform variables. The inverse
operation

V1 = F−1(U1), V2 = F−1(U2|U1), . . . , Vd = F−1(Ud|U1, . . . , Ud−1),

can be used to simulate from a distribution. For any copula F , if U is a vector of independent
random variables, V = T−1(U) has distribution F .

rvinecopulib 23

The formulas above assume a vine copula model with order d, . . . , 1. More generally, rosenblatt()
returns the variables

UM [d+1−j,j] = F (VM [d−j+1,j]|VM [d−j,j], . . . , VM [1,j]),

where M is the structure matrix. Similarly, inverse_rosenblatt() returns

VM [d+1−j,j] = F−1(UM [d−j+1,j]|UM [d−j,j], . . . , UM [1,j]).

If some variables have atoms, Brockwell (10.1016/j.spl.2007.02.008) proposed a simple random-
ization scheme to ensure that output is still independent uniform if the model is correct. The trans-
formation reads

UM [d−j,j] =Wd−jF (VM [d−j,j]|VM [d−j−1,j−1], . . . , VM [0,0])+(1−Wd−j)F
−(VM [d−j,j]|VM [d−j−1,j−1], . . . , VM [0,0]),

where F− is the left limit of the conditional cdf and W1, . . . ,Wd are are independent standard uni-
form random variables. This is used by default. If you are interested in the conditional probabilities

F (VM [d−j,j]|VM [d−j−1,j−1], . . . , VM [0,0]),

set randomize_discrete = FALSE.

Examples

simulate data with some dependence
x <- replicate(3, rnorm(200))
x[, 2:3] <- x[, 2:3] + x[, 1]
pairs(x)

estimate a vine distribution model
fit <- vine(x, copula_controls = list(family_set = "par"))

transform into independent uniforms
u <- rosenblatt(x, fit)
pairs(u)

inversion
pairs(inverse_rosenblatt(u, fit))

works similarly for vinecop models
vc <- fit$copula
rosenblatt(pseudo_obs(x), vc)

rvinecopulib High Performance Algorithms for Vine Copula Modeling

24 rvinecopulib

Description

Provides an interface to ’vinecopulib’, a C++ library for vine copula modeling based on ’Boost’
and ’Eigen’. The ’rvinecopulib’ package implements the core features of the popular ’VineCop-
ula’ package, in particular inference algorithms for both vine copula and bivariate copula models.
Advantages over ’VineCopula’ are a sleeker and more modern API, improved performances, espe-
cially in high dimensions, nonparametric and multi-parameter families. The ’rvinecopulib’ package
includes ’vinecopulib’ as header-only C++ library (currently version 0.6.2). Thus users do not need
to install ’vinecopulib’ itself in order to use ’rvinecopulib’. Since their initial releases, ’vinecopulib’
is licensed under the MIT License, and ’rvinecopulib’ is licensed under the GNU GPL version 3.

Author(s)

Thomas Nagler, Thibault Vatter

See Also

Useful links:

• https://vinecopulib.github.io/rvinecopulib/

• Report bugs at https://github.com/vinecopulib/rvinecopulib/issues

Examples

bicop_dist objects
bicop_dist("gaussian", 0, 0.5)
str(bicop_dist("gauss", 0, 0.5))
bicop <- bicop_dist("clayton", 90, 3)

bicop objects
u <- rbicop(500, "gauss", 0, 0.5)
fit1 <- bicop(u, family = "par")
fit1

vinecop_dist objects
specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(

list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree

)
specify R-vine matrix
mat <- matrix(c(1, 2, 3, 1, 2, 0, 1, 0, 0), 3, 3)
build the vinecop_dist object
vc <- vinecop_dist(pcs, mat)
summary(vc)

vinecop objects
u <- sapply(1:3, function(i) runif(50))
vc <- vinecop(u, family = "par")
summary(vc)

https://vinecopulib.github.io/rvinecopulib/
https://github.com/vinecopulib/rvinecopulib/issues

rvine_structure 25

vine_dist objects
vc <- vine_dist(list(list(distr = "norm")), pcs, mat)
summary(vc)

vine objects
x <- sapply(1:3, function(i) rnorm(50))
vc <- vine(x, copula_controls = list(family_set = "par"))
summary(vc)

rvine_structure R-vine structure

Description

R-vine structures are compressed representations encoding the tree structure of the vine, i.e. the con-
ditioned/conditioning variables of each edge. The functions [cvine_structure()] or [dvine_structure()]
give a simpler way to construct C-vines (every tree is a star) and D-vines (every tree is a path), re-
spectively (see Examples).

Usage

rvine_structure(order, struct_array = list(), is_natural_order = FALSE)

cvine_structure(order, trunc_lvl = Inf)

dvine_structure(order, trunc_lvl = Inf)

rvine_matrix(matrix)

Arguments

order a vector of positive integers.

struct_array a list of vectors of positive integers. The vectors represent rows of the r-rvine
structure and the number of elements have to be compatible with the order
vector. If empty, the model is 0-truncated.

is_natural_order

whether struct_array is assumed to be provided in natural order already (a
structure is in natural order if the anti- diagonal is 1, .., d from bottom left to top
right).

trunc_lvl the truncation level

matrix an R-vine matrix, see Details.

Details

The R-vine structure is essentially a lower-triangular matrix/triangular array, with a notation that
differs from the one in the VineCopula package. An example array is

26 rvine_structure

4 4 4 4
3 3 3
2 2
1

which encodes the following pair-copulas:

tree edge pair-copulas
0 0 (1, 4)

1 (2, 4)
2 (3, 4)

1 0 (1, 3; 4)
1 (2, 3; 4)

2 0 (1, 2; 3, 4)

An R-vine structure can be converted to an R-vine matrix using as_rvine_matrix(), which en-
codes the same model with a square matrix filled with zeros. For instance, the matrix corresponding
to the structure above is:

4 4 4 4
3 3 3 0
2 2 0 0
1 0 0 0

Similarly, an R-vine matrix can be converted to an R-vine structure using as_rvine_structure().

Denoting by M[i, j] the array entry in row i and column j (the pair-copula index for edge e in tree
t of a d dimensional vine is (M[d + 1 - e, e], M[t, e]; M[t - 1, e], ..., M[1, e]). Less
formally,

1. Start with the counter-diagonal element of column e (first conditioned variable).

2. Jump up to the element in row t (second conditioned variable).

3. Gather all entries further up in column e (conditioning set).

Internally, the diagonal is stored separately from the off-diagonal elements, which are stored as a
triangular array. For instance, the off-diagonal elements off the structure above are stored as

4 4 4
3 3
2

for the structure above. The reason is that it allows for parsimonious representations of truncated
models. For instance, the 2-truncated model is represented by the same diagonal and the following
truncated triangular array:

4 4 4
3 3

rvine_structure 27

A valid R-vine structure or matrix must satisfy several conditions which are checked when rvine_structure(),
rvine_matrix(), or some coercion methods (see as_rvine_structure() and as_rvine_matrix()
are called:

1. It can only contain numbers between 1 and d (and additionally zeros for R-vine matrices).

2. The anti-diagonal must contain the numbers 1, ..., d.

3. The anti-diagonal entry of a column must not be contained in any column further to the right.

4. The entries of a column must be contained in all columns to the left.

5. The proximity condition must hold: For all t = 1, ..., d - 2 and e = 1, ..., d - t there must
exist an index j > d, such that (M[t, e], {M[1, e], ..., M[t - 1, e]}) equals either
(M[d + 1 - j, j], {M[1, j], ..., M[t - 1, j]}) or (M[t - 1, j], {M[d + 1 - j, j], M[1, j], ..., M[t - 2, j]}).

Condition 5 already implies conditions 2-4, but is more difficult to check by hand.

Value

Either an rvine_structure or an rvine_matrix.

See Also

as_rvine_structure(), as_rvine_matrix(), plot.rvine_structure(), plot.rvine_matrix(),
rvine_structure_sim(), rvine_matrix_sim()

Examples

R-vine structures can be constructed from the order vector and struct_array
rvine_structure(order = 1:4, struct_array = list(

c(4, 4, 4),
c(3, 3),
2

))

R-vine matrices can be constructed from standard matrices
mat <- matrix(c(4, 3, 2, 1, 4, 3, 2, 0, 4, 3, 0, 0, 4, 0, 0, 0), 4, 4)
rvine_matrix(mat)

coerce to R-vine structure
str(as_rvine_structure(mat))

truncate and construct the R-vine matrix
mat[3, 1] <- 0
rvine_matrix(mat)

or use directly the R-vine structure constructor
rvine_structure(order = 1:4, struct_array = list(

c(4, 4, 4),
c(3, 3)

))

throws an error
mat[3, 1] <- 5

28 rvine_structure_sim

try(rvine_matrix(mat))

C-vine structure
cvine <- cvine_structure(1:5)
cvine
plot(cvine)

D-vine structure
dvine <- dvine_structure(c(1, 4, 2, 3, 5))
dvine
plot(dvine)

rvine_structure_sim Simulate R-vine structures

Description

Simulates from a uniform distribution over all R-vine structures on d variables. rvine_structure_sim()
returns an rvine_structure() object, rvine_matrix_sim() an rvine_matrix().

Usage

rvine_structure_sim(d, natural_order = FALSE)

rvine_matrix_sim(d, natural_order = FALSE)

Arguments

d the number of variables

natural_order boolean; whether the structures should be in natural order (counter-diagonal is
1:d).

See Also

rvine_structure(), rvine_matrix(), plot.rvine_structure(), plot.rvine_matrix()

Examples

rvine_structure_sim(10)

rvine_structure_sim(10, natural_order = TRUE) # counter-diagonal is 1:d

rvine_matrix_sim(10)

truncate_model 29

truncate_model Truncate a vine copula model

Description

Extracts a truncated sub-vine based on a truncation level supplied by user.

Usage

truncate_model(object, ...)

S3 method for class 'rvine_structure'
truncate_model(object, trunc_lvl, ...)

S3 method for class 'rvine_matrix'
truncate_model(object, trunc_lvl, ...)

S3 method for class 'vinecop_dist'
truncate_model(object, trunc_lvl, ...)

S3 method for class 'vine_dist'
truncate_model(object, trunc_lvl, ...)

Arguments

object a model object.

... further arguments passed to specific methods.

trunc_lvl tree level after which the vine copula should be truncated.

Details

While a vine model for a d dimensional random vector contains at most d-1 nested trees, this
function extracts a sub-model based on a given truncation level.

For instance, truncate_model(object, 1) results in a 1-truncated vine (i.e., a vine with a single
tree). Similarly truncate_model(object, 2) results in a 2-truncated vine (i.e., a vine with two
trees). Note that truncate_model(truncate_model(object, 1), 2) returns a 1-truncated vine.

Examples

specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(

list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree

)

specify R-vine matrix

30 vine

mat <- matrix(c(1, 2, 3, 1, 2, 0, 1, 0, 0), 3, 3)

set up vine structure
structure <- as_rvine_structure(mat)

truncate the model
truncate_model(structure, 1)

set up vine copula model
vc <- vinecop_dist(pcs, mat)

truncate the model
truncate_model(vc, 1)

vine Vine copula models

Description

Automated fitting or creation of custom vine copula models

Usage

vine(
data,
margins_controls = list(mult = NULL, xmin = NaN, xmax = NaN, bw = NA, deg = 2),
copula_controls = list(family_set = "all", structure = NA, par_method = "mle",
nonpar_method = "constant", mult = 1, selcrit = "aic", psi0 = 0.9, presel = TRUE,
allow_rotations = TRUE, trunc_lvl = Inf, tree_crit = "tau", threshold = 0, keep_data
= FALSE, show_trace = FALSE, cores = 1, tree_algorithm = "mst_prim"),

weights = numeric(),
keep_data = FALSE,
cores = 1

)

vine_dist(margins, pair_copulas, structure)

Arguments

data a matrix or data.frame. Discrete variables have to be declared as ordered().
margins_controls

a list with arguments to be passed to kde1d::kde1d(). Currently, there can be

• mult numeric vector of length one or d; all bandwidths for marginal kernel
density estimation are multiplied with mult. Defaults to log(1 + d) where
d is the number of variables after applying rvinecopulib:::expand_factors().

• xmin numeric vector of length d; see kde1d::kde1d().
• xmax numeric vector of length d; see kde1d::kde1d().

vine 31

• type numeric vector of length d; see kde1d::kde1d().
• bw numeric vector of length d; see kde1d::kde1d().
• deg numeric vector of length one or d; kde1d::kde1d().

copula_controls

a list with arguments to be passed to vinecop().

weights optional vector of weights for each observation.

keep_data whether the original data should be stored; if you want to store the pseudo-
observations used for fitting the copula, use the copula_controls argument.

cores the number of cores to use for parallel computations.

margins A list with with each element containing the specification of a marginal stats::Distributions.
Each marginal specification should be a list with containing at least the distribu-
tion family ("distr") and optionally the parameters, e.g. list(list(distr =
"norm"), list(distr = "norm", mu = 1), list(distr = "beta", shape1 = 1,
shape2 = 1)). Note that parameters that have no default values have to be pro-
vided. Furthermore, if margins has length one, it will be recycled for every
component.

pair_copulas A nested list of ’bicop_dist’ objects, where pair_copulas[[t]][[e]] corre-
sponds to the pair-copula at edge e in tree t.

structure an rvine_structure object, namely a compressed representation of the vine
structure, or an object that can be coerced into one (see rvine_structure() and
as_rvine_structure()). The dimension must be length(pair_copulas[[1]])
+ 1.

Details

vine_dist() creates a vine copula by specifying the margins, a nested list of bicop_dist objects
and a quadratic structure matrix.

vine() provides automated fitting for vine copula models. margins_controls is a list with the
same parameters as kde1d::kde1d() (except for x). copula_controls is a list with the same
parameters as vinecop() (except for data).

Value

Objects inheriting from vine_dist for vine_dist(), and vine and vine_dist for vine().

Objects from the vine_dist class are lists containing:

• margins, a list of marginals (see below).

• copula, an object of the class vinecop_dist, see vinecop_dist().

For objects from the vine class, copula is also an object of the class vine, see vinecop(). Addi-
tionally, objects from the vine class contain:

• margins_controls, a list with the set of fit controls that was passed to kde1d::kde1d()
when estimating the margins.

• copula_controls, a list with the set of fit controls that was passed to vinecop() when
estimating the copula.

32 vinecop

• data (optionally, if keep_data = TRUE was used), the dataset that was passed to vine().

• nobs, an integer containing the number of observations that was used to fit the model.

Concerning margins:

• For objects created with vine_dist(), it simply corresponds to the margins argument.

• For objects created with vine(), it is a list of objects of class kde1d, see kde1d::kde1d().

Examples

specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(

list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree

)

specify R-vine matrix
mat <- matrix(c(1, 2, 3, 1, 2, 0, 1, 0, 0), 3, 3)

set up vine copula model with Gaussian margins
vc <- vine_dist(list(list(distr = "norm")), pcs, mat)

show model
summary(vc)

simulate some data
x <- rvine(50, vc)

estimate a vine copula model
fit <- vine(x, copula_controls = list(family_set = "par"))
summary(fit)

model for discrete data
x <- as.data.frame(x)
x[, 1] <- ordered(round(x[, 1]), levels = seq.int(-5, 5))
fit_disc <- vine(x, copula_controls = list(family_set = "par"))
summary(fit_disc)

vinecop Fitting vine copula models

Description

Automated fitting and model selection for vine copula models with continuous or discrete data.
Selection of the structure is performed using the algorithm of Dissmann et al. (2013).

vinecop 33

Usage

vinecop(
data,
var_types = rep("c", NCOL(data)),
family_set = "all",
structure = NA,
par_method = "mle",
nonpar_method = "constant",
mult = 1,
selcrit = "aic",
weights = numeric(),
psi0 = 0.9,
presel = TRUE,
allow_rotations = TRUE,
trunc_lvl = Inf,
tree_crit = "tau",
threshold = 0,
keep_data = FALSE,
vinecop_object = NULL,
show_trace = FALSE,
cores = 1,
tree_algorithm = "mst_prim"

)

Arguments

data a matrix or data.frame with at least two columns, containing the (pseudo-)observations
for the two variables (copula data should have approximately uniform margins).
More columns are required for discrete models, see Details.

var_types variable types, a length d vector; e.g., c("c", "c") for two continuous variables,
or c("c", "d") for first variable continuous and second discrete.

family_set a character vector of families; see bicop() for additional options.
structure an rvine_structure object, namely a compressed representation of the vine

structure, or an object that can be coerced into one (see rvine_structure() and
as_rvine_structure()). The dimension must be length(pair_copulas[[1]])
+ 1; structure = NA performs automatic selection based on Dissman’s algo-
rithm. See Details for partial selection of the structure.

par_method the estimation method for parametric models, either "mle" for maximum likeli-
hood or "itau" for inversion of Kendall’s tau (only available for one-parameter
families and "t".

nonpar_method the estimation method for nonparametric models, either "constant" for the
standard transformation estimator, or "linear"/"quadratic" for the local-likelihood
approximations of order one/two.

mult multiplier for the smoothing parameters of nonparametric families. Values larger
than 1 make the estimate more smooth, values less than 1 less smooth.

selcrit criterion for family selection, either "loglik", "aic", "bic", "mbic". For
vinecop() there is the additional option "mbicv".

34 vinecop

weights optional vector of weights for each observation.

psi0 prior probability of a non-independence copula (only used for selcrit = "mbic"
and selcrit = "mbicv").

presel whether the family set should be thinned out according to symmetry character-
istics of the data.

allow_rotations

whether to allow rotations of the copula.

trunc_lvl the truncation level of the vine copula; Inf means no truncation, NA indicates
that the truncation level should be selected automatically by mBICV().

tree_crit the criterion for tree selection, one of "tau", "rho", "hoeffd", "mcor", or
"joe" for Kendall’s τ , Spearman’s ρ, Hoeffding’s D, maximum correlation,
or logarithm of the partial correlation, respectively.

threshold for thresholded vine copulas; NA indicates that the threshold should be selected
automatically by mBICV().

keep_data whether the data should be stored (necessary for using fitted()).

vinecop_object a vinecop object to be updated; if provided, only the parameters are fit; structure
and families are kept the same.

show_trace logical; whether a trace of the fitting progress should be printed.

cores number of cores to use; if more than 1, estimation of pair copulas within a tree
is done in parallel.

tree_algorithm The algorithm for building the spanning tree ("mst_prim", "mst_kruskal",
"random_weighted", or "random_unweighted") during the tree-wise struc-
ture selection. "mst_prim" and "mst_kruskal" use Prim’s and Kruskal’s al-
gorithms respectively to select the maximum spanning tree, maximizing the
sum of the edge weights (i.e., tree_criterion). "random_weighted" and
"random_unweighted" use Wilson’s algorithm to generate a random spanning
tree, either with probability proportional to the product of the edge weights
(weighted) or uniformly (unweighted).

Details

Missing data:
If there are missing data (i.e., NA entries), incomplete observations are discarded before fitting a
pair-copula. This is done on a pair-by-pair basis so that the maximal available information is used.

Discrete variables:
The dependence measures used to select trees (default: Kendall’s tau) are corrected for ties (see
wdm::wdm).
Let n be the number of observations and d the number of variables. When at least one variable
is discrete, two types of "observations" are required in data: the first n x d block contains
realizations of FXj (Xj). The second n x d block contains realizations of FXj (X

−
j). The minus

indicates a left-sided limit of the cdf. For, e.g., an integer-valued variable, it holds FXj
(X−

j) =
FXj

(Xj − 1). For continuous variables the left limit and the cdf itself coincide. Respective
columns can be omitted in the second block.

vinecop 35

Structure selection:
Selection of the structure is performed using the algorithm of Dissmann, J. F., E. C. Brechmann, C.
Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application
to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69. The dependence
measure used to select trees (default: Kendall’s tau) is corrected for ties and can be changed
using the tree_criterion argument, which can be set to "tau", "rho" or "hoeffd". Both
Prim’s (default: "mst_prim") and Kruskal’s ()"mst_kruskal") algorithms are available through
tree_algorithm to set the maximum spanning tree selection algorithm. An alternative to the
maximum spanning tree selection is to use random spanning trees, which can be selected using
controls.tree_algorithm and come in two flavors, both using Wilson’s algorithm loop erased
random walks:

• "random_weighted"‘ generates a random spanning tree with probability proportional to the
product of the weights (i.e., the dependence) of the edges in the tree.

• "random_unweighted"‘ generates a random spanning tree uniformly over all spanning trees
satisfying the proximity condition.

Partial structure selection:
It is possible to fix the vine structure only in the first trees and select the remaining ones automati-
cally. To specify only the first k trees, supply a k-truncated rvine_structure() or rvine_matrix().
All trees up to trunc_lvl will then be selected automatically.

Value

Objects inheriting from vinecop and vinecop_dist for vinecop(). In addition to the entries
provided by vinecop_dist(), there are:

• threshold, the (set or estimated) threshold used for thresholding the vine.

• data (optionally, if keep_data = TRUE was used), the dataset that was passed to vinecop().

• controls, a list with fit controls that was passed to vinecop().

• nobs, the number of observations that were used to fit the model.

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating
regular vine copulae and application to financial returns. Computational Statistics & Data Analy-
sis, 59 (1), 52-69.

See Also

vinecop(), dvinecop(), pvinecop(), rvinecop(), plot.vinecop(), contour.vinecop()

Examples

simulate dummy data
x <- rnorm(30) * matrix(1, 30, 5) + 0.5 * matrix(rnorm(30 * 5), 30, 5)
u <- pseudo_obs(x)

fit and select the model structure, family and parameters
fit <- vinecop(u)

36 vinecop_dist

summary(fit)
plot(fit)
contour(fit)

select by log-likelihood criterion from one-paramter families
fit <- vinecop(u, family_set = "onepar", selcrit = "bic")
summary(fit)

1-truncated, Gaussian D-vine
fit <- vinecop(u, structure = dvine_structure(1:5), family = "gauss", trunc_lvl = 1)
plot(fit)
contour(fit)

Partial structure selection with only first tree specified
structure <- rvine_structure(order = 1:5, list(rep(5, 4)))
structure
fit <- vinecop(u, structure = structure, family = "gauss")
plot(fit)

Model for discrete data
x <- qpois(u, 1) # transform to Poisson margins
we require two types of observations (see Details)
u_disc <- cbind(ppois(x, 1), ppois(x - 1, 1))
fit <- vinecop(u_disc, var_types = rep("d", 5))

Model for mixed data
x <- qpois(u[, 1], 1) # transform first variable to Poisson margin
we require two types of observations (see Details)
u_disc <- cbind(ppois(x, 1), u[, 2:5], ppois(x - 1, 1))
fit <- vinecop(u_disc, var_types = c("d", rep("c", 4)))

vinecop_dist Vine copula models

Description

Create custom vine copula models by specifying the pair-copulas, structure, and variable types.

Usage

vinecop_dist(pair_copulas, structure, var_types = rep("c", dim(structure)[1]))

Arguments

pair_copulas A nested list of ’bicop_dist()’ objects, where pair_copulas[[t]][[e]] cor-
responds to the pair-copula at edge e in tree t.

structure an rvine_structure object, namely a compressed representation of the vine
structure, or an object that can be coerced into one (see rvine_structure() and
as_rvine_structure()). The dimension must be length(pair_copulas[[1]])

vinecop_dist 37

+ 1; structure = NA performs automatic selection based on Dissman’s algo-
rithm. See Details for partial selection of the structure.

var_types variable types, a length d vector; e.g., c("c", "c") for two continuous variables,
or c("c", "d") for first variable continuous and second discrete.

Value

Object of class vinecop_dist, i.e., a list containing:

• pair_copulas, a list of lists. Each element of pair_copulas corresponds to a tree, which is
itself a list of bicop_dist() objects.

• structure, a compressed representation of the vine structure, or an object that can be coerced
into one (see rvine_structure() and as_rvine_structure()).

• npars, a numeric with the number of (effective) parameters.

• var_types the variable types.

See Also

rvine_structure(), rvine_matrix(), vinecop(), plot.vinecop_dist(), contour.vinecop_dist(),
dvinecop(), pvinecop(), rvinecop()

Examples

specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(

list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree

)

specify R-vine matrix
mat <- matrix(c(1, 2, 3, 1, 2, 0, 1, 0, 0), 3, 3)

set up vine copula model
vc <- vinecop_dist(pcs, mat)

visualization
plot(vc)
contour(vc)

simulate from the model
pairs(rvinecop(200, vc))

38 vinecop_distributions

vinecop_distributions Vine copula distributions

Description

Density, distribution function and random generation for the vine copula distribution.

Usage

dvinecop(u, vinecop, cores = 1)

pvinecop(u, vinecop, n_mc = 10^4, cores = 1)

rvinecop(n, vinecop, qrng = FALSE, cores = 1)

Arguments

u matrix of evaluation points; must contain at least d columns, where d is the
number of variables in the vine. More columns are required for discrete models,
see Details.

vinecop an object of class "vinecop_dist".

cores number of cores to use; if larger than one, computations are done in parallel on
cores batches .

n_mc number of samples used for quasi Monte Carlo integration.

n number of observations.

qrng if TRUE, generates quasi-random numbers using the multivariate Generalized
Halton sequence up to dimension 300 and the Generalized Sobol sequence in
higher dimensions (default qrng = FALSE).

Details

See vinecop() for the estimation and construction of vine copula models.

The copula density is defined as joint density divided by marginal densities, irrespective of variable
types.

Discrete variables:
When at least one variable is discrete, two types of "observations" are required in u: the first
n x d block contains realizations of FXj

(Xj). The second n x d block contains realizations of
FXj (X

−
j). The minus indicates a left-sided limit of the cdf. For, e.g., an integer-valued variable,

it holds FXj
(X−

j) = FXj
(Xj − 1). For continuous variables the left limit and the cdf itself

coincide. Respective columns can be omitted in the second block.

vinecop_predict_and_fitted 39

Value

dvinecop() gives the density, pvinecop() gives the distribution function, and rvinecop() gener-
ates random deviates.

The length of the result is determined by n for rvinecop(), and the number of rows in u for the
other functions.

The vinecop object is recycled to the length of the result.

See Also

vinecop_dist(), vinecop(), plot.vinecop(), contour.vinecop()

Examples

simulate dummy data
x <- rnorm(30) * matrix(1, 30, 5) + 0.5 * matrix(rnorm(30 * 5), 30, 5)
u <- pseudo_obs(x)

fit a model
vc <- vinecop(u, family = "clayton")

simulate from the model
u <- rvinecop(100, vc)
pairs(u)

evaluate the density and cdf
dvinecop(u[1,], vc)
pvinecop(u[1,], vc)

Discrete models
vc$var_types <- rep("d", 5) # convert model to discrete

with discrete data we need two types of observations (see Details)
x <- qpois(u, 1) # transform to Poisson margins
u_disc <- cbind(ppois(x, 1), ppois(x - 1, 1))

dvinecop(u_disc[1:5,], vc)
pvinecop(u_disc[1:5,], vc)

simulated data always has uniform margins
pairs(rvinecop(200, vc))

vinecop_predict_and_fitted

Predictions and fitted values for a vine copula model

Description

Predictions of the density and distribution function for a vine copula model.

40 vinecop_predict_and_fitted

Usage

S3 method for class 'vinecop'
predict(object, newdata, what = "pdf", n_mc = 10^4, cores = 1, ...)

S3 method for class 'vinecop'
fitted(object, what = "pdf", n_mc = 10^4, cores = 1, ...)

Arguments

object a vinecop object.

newdata points where the fit shall be evaluated.

what what to predict, either "pdf" or "cdf".

n_mc number of samples used for quasi Monte Carlo integration when what = "cdf".

cores number of cores to use; if larger than one, computations are done in parallel on
cores batches.

... unused.

Details

fitted() can only be called if the model was fit with the keep_data = TRUE option.

Discrete variables:
When at least one variable is discrete, two types of "observations" are required in newdata: the
first n x d block contains realizations of FXj

(Xj). The second n x d block contains realizations
of FXj (X

−
j). The minus indicates a left-sided limit of the cdf. For, e.g., an integer-valued vari-

able, it holds FXj
(X−

j) = FXj
(Xj − 1). For continuous variables the left limit and the cdf itself

coincide. Respective columns can be omitted in the second block.

Value

fitted() and predict() have return values similar to dvinecop() and pvinecop().

Examples

u <- sapply(1:5, function(i) runif(50))
fit <- vinecop(u, family = "par", keep_data = TRUE)
all.equal(predict(fit, u), fitted(fit), check.environment = FALSE)

vine_distributions 41

vine_distributions Vine based distributions

Description

Density, distribution function and random generation for the vine based distribution.

Usage

dvine(x, vine, cores = 1)

pvine(x, vine, n_mc = 10^4, cores = 1)

rvine(n, vine, qrng = FALSE, cores = 1)

Arguments

x evaluation points, either a length d vector or a d-column matrix, where d is the
number of variables in the vine.

vine an object of class "vine_dist".

cores number of cores to use; if larger than one, computations are done in parallel on
cores batches .

n_mc number of samples used for quasi Monte Carlo integration.

n number of observations.

qrng if TRUE, generates quasi-random numbers using the multivariate Generalized
Halton sequence up to dimension 300 and the Generalized Sobol sequence in
higher dimensions (default qrng = FALSE).

Details

See vine for the estimation and construction of vine models. Here, the density, distribution function
and random generation for the vine distributions are standard.

The functions are based on dvinecop(), pvinecop() and rvinecop() for vinecop objects, and
either kde1d::dkde1d(), kde1d::pkde1d() and kde1d::qkde1d() for estimated vines (i.e., out-
put of vine()), or the standard d/p/q-xxx from stats::Distributions for custom vines (i.e., output of
vine_dist()).

Value

dvine() gives the density, pvine() gives the distribution function, and rvine() generates random
deviates.

The length of the result is determined by n for rvine(), and the number of rows in u for the other
functions.

The vine object is recycled to the length of the result.

42 vine_predict_and_fitted

Examples

specify pair-copulas
bicop <- bicop_dist("bb1", 90, c(3, 2))
pcs <- list(

list(bicop, bicop), # pair-copulas in first tree
list(bicop) # pair-copulas in second tree

)

set up vine copula model
mat <- rvine_matrix_sim(3)
vc <- vine_dist(list(list(distr = "norm")), pcs, mat)

simulate from the model
x <- rvine(200, vc)
pairs(x)

evaluate the density and cdf
dvine(x[1,], vc)
pvine(x[1,], vc)

vine_predict_and_fitted

Predictions and fitted values for a vine copula model

Description

Predictions of the density and distribution function for a vine copula model.

Usage

S3 method for class 'vine'
predict(object, newdata, what = "pdf", n_mc = 10^4, cores = 1, ...)

S3 method for class 'vine'
fitted(object, what = "pdf", n_mc = 10^4, cores = 1, ...)

Arguments

object a vine object.

newdata points where the fit shall be evaluated.

what what to predict, either "pdf" or "cdf".

n_mc number of samples used for quasi Monte Carlo integration when what = "cdf".

cores number of cores to use; if larger than one, computations are done in parallel on
cores batches .

... unused.

vine_predict_and_fitted 43

Value

fitted() and predict() have return values similar to dvine() and pvine().

Examples

x <- sapply(1:5, function(i) rnorm(50))
fit <- vine(x, copula_controls = list(family_set = "par"), keep_data = TRUE)
all.equal(predict(fit, x), fitted(fit), check.environment = FALSE)

Index

∗ package
rvinecopulib, 23

∗ plot
plot.bicop_dist, 17
plot.vinecop_dist, 19

as.bicop, 2
as_rvine_matrix (as_rvine_structure), 3
as_rvine_matrix(), 26, 27
as_rvine_structure, 3
as_rvine_structure(), 26, 27, 31, 33, 36, 37

bicop, 5, 10, 14
bicop(), 7, 11, 33
bicop_dist, 8, 11, 17
bicop_dist(), 7, 9, 11, 17, 18, 36, 37
bicop_distributions, 9
bicop_predict_and_fitted, 11

contour.bicop, 20
contour.bicop (plot.bicop_dist), 17
contour.bicop(), 7, 9
contour.bicop_dist (plot.bicop_dist), 17
contour.vinecop (plot.vinecop_dist), 19
contour.vinecop(), 35, 39
contour.vinecop_dist

(plot.vinecop_dist), 19
contour.vinecop_dist(), 37
cvine_structure (rvine_structure), 25

dbicop (bicop_distributions), 9
dbicop(), 7, 9, 12
dbicop_dist (bicop_distributions), 9
dvine (vine_distributions), 41
dvine(), 43
dvine_dist (vine_distributions), 41
dvine_structure (rvine_structure), 25
dvinecop (vinecop_distributions), 38
dvinecop(), 35, 37, 40, 41
dvinecop_dist (vinecop_distributions),

38

emp_cdf, 12

fitted(), 6, 34
fitted.bicop

(bicop_predict_and_fitted), 11
fitted.vine (vine_predict_and_fitted),

42
fitted.vinecop

(vinecop_predict_and_fitted),
39

get_all_families (getters), 13
get_all_ktaus (getters), 13
get_all_pair_copulas (getters), 13
get_all_parameters (getters), 13
get_family (getters), 13
get_family(), 14
get_ktau (getters), 13
get_ktau(), 14
get_matrix, 14
get_matrix (getters), 13
get_pair_copula (getters), 13
get_pair_copula(), 14
get_parameters (getters), 13
get_parameters(), 14
get_structure, 14
get_structure (getters), 13
getters, 13
graphics::contour(), 18

hbicop (bicop_distributions), 9
hbicop(), 7, 9, 12
hbicop_dist (bicop_distributions), 9

inverse_rosenblatt (rosenblatt), 22
is.rvine_matrix (rvine_structure), 25
is.rvine_structure (rvine_structure), 25

kde1d::dkde1d(), 41
kde1d::kde1d(), 30–32
kde1d::pkde1d(), 41

44

INDEX 45

kde1d::qkde1d(), 41
ktau_to_par (par_to_ktau), 17

lattice::wireframe(), 18

mBICV, 15
mBICV(), 6, 34

pairs_copula_data, 16
par_to_ktau, 17
pbicop (bicop_distributions), 9
pbicop(), 7, 9, 12
pbicop_dist (bicop_distributions), 9
plot.bicop, 19, 20
plot.bicop (plot.bicop_dist), 17
plot.bicop(), 7, 9
plot.bicop_dist, 17
plot.rvine_matrix

(plot.rvine_structure), 18
plot.rvine_matrix(), 27, 28
plot.rvine_structure, 18
plot.rvine_structure(), 27, 28
plot.vinecop (plot.vinecop_dist), 19
plot.vinecop(), 35, 39
plot.vinecop_dist, 19
plot.vinecop_dist(), 37
predict.bicop

(bicop_predict_and_fitted), 11
predict.bicop_dist

(bicop_predict_and_fitted), 11
predict.vine (vine_predict_and_fitted),

42
predict.vinecop

(vinecop_predict_and_fitted),
39

pseudo_obs, 21
pvine (vine_distributions), 41
pvine(), 43
pvine_dist (vine_distributions), 41
pvinecop (vinecop_distributions), 38
pvinecop(), 35, 37, 40, 41
pvinecop_dist (vinecop_distributions),

38

rank(), 21
rbicop (bicop_distributions), 9
rbicop(), 7, 9
rbicop_dist (bicop_distributions), 9
rosenblatt, 22

rvine (vine_distributions), 41
rvine_dist (vine_distributions), 41
rvine_matrix (rvine_structure), 25
rvine_matrix(), 3, 4, 27, 28, 37
rvine_matrix_sim (rvine_structure_sim),

28
rvine_matrix_sim(), 27
rvine_structure, 14, 25
rvine_structure(), 3, 4, 27, 28, 31, 33, 36,

37
rvine_structure_sim, 28
rvine_structure_sim(), 27
rvinecop (vinecop_distributions), 38
rvinecop(), 35, 37, 41
rvinecop_dist (vinecop_distributions),

38
rvinecopulib, 23
rvinecopulib-package (rvinecopulib), 23

stats::Distributions, 31, 41

truncate_model, 29

vine, 30, 41
vine(), 31, 32, 41
vine_dist (vine), 30
vine_dist(), 31, 32, 41
vine_distributions, 41
vine_predict_and_fitted, 42
vinecop, 32, 41
vinecop(), 31, 35, 37–39
vinecop_dist, 20, 36
vinecop_dist(), 31, 35, 39
vinecop_distributions, 38
vinecop_predict_and_fitted, 39

wdm::wdm, 34

	as.bicop
	as_rvine_structure
	bicop
	bicop_dist
	bicop_distributions
	bicop_predict_and_fitted
	emp_cdf
	getters
	mBICV
	pairs_copula_data
	par_to_ktau
	plot.bicop_dist
	plot.rvine_structure
	plot.vinecop_dist
	pseudo_obs
	rosenblatt
	rvinecopulib
	rvine_structure
	rvine_structure_sim
	truncate_model
	vine
	vinecop
	vinecop_dist
	vinecop_distributions
	vinecop_predict_and_fitted
	vine_distributions
	vine_predict_and_fitted
	Index

