Package ‘rmgarch’

October 14, 2022
Type Package
Title Multivariate GARCH Models
Version 1.3-9
Date 2022-02-03
Author Alexios Galanos <alexios@4dscape.com>
Maintainer Alexios Galanos <alexios@4dscape.com>
Depends R (>= 3.0.2), methods, rugarch (>= 1.4-7), parallel
LinkingTo Rcpp (>=0.10.6), ReppArmadillo (>= 0.2.34)

Imports Rsolnp, MASS, Matrix, zoo, xts, Bessel, ff, shape, pcaPP, spd,
Repp, utils, graphics, stats, grDevices, corpcor

Description
Feasible multivariate GARCH models including DCC, GO-GARCH and Copula-GARCH.

Collate rmgarch-extrafun.R rmgarch-var.R rmgarch-functions.R
rmgarch-classes.R rmgarch-ica.R rmgarch-series.R
rmgarch-mmean.R gogarch-classes.R gogarch-distributions.R
gogarch-main.R gogarch-methods.R rdcc-classes.R rdcc-main.R
rdcc-likelihoods.R rdcc-plots.R fdcc-likelihoods.R fdcc-main.R
rdcc-methods.R rdcc-mdistributions.R rdcc-postestimation.R
rdcc-solver.R copula-classes.R copula-distributions.R
copula-likelihoods.R copula-solver.R copula-fn.R
copula-transformations.R copula-main.R copula-postestimation.R
copula-methods.R rmgarch-tests.R rmgarch-scenario.R zzz.R

LazyLoad yes

URL http://www.unstarched.net, https://github.com/alexiosg/rmgarch
License GPL-3

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-02-05 00:30:06 UTC

http://www.unstarched.net
https://github.com/alexiosg/rmgarch

2 R topics documented:

R topics documented:

rmgarch-package 3
cGARCHfilter-class e 4
cgarchfilter-methods 6
cGARCHAfit-class e 7
cgarchfit-methods e 8
cGARCHSImM-class e 10
cgarchsim-methods L 11
cGARCHSspec-class e 13
cgarchspec-methods 14
COrdiSt e e 15
DCCAilter-class o e 16
decfilter-methods 17
DCCfit-class o e e 18
decfitmethods L 20
DCCforecast-class e 21
decforecast-methods 22
DCCroll-class o o e 24
decroll-methods oL 25
DCCsim-class e 26
deesim-methods oL 27
DCCspec-class o o i e 29
decspec-methods L 30
DCCtest o o e 31
dji30retw . . .o e 32
fastica e 33
fMoments-class e e 36
fmoments-methods L 37
fScenario-class L 38
fscenario-methods L 39
goGARCHIft-class e 41
goGARCH(filter-class e 42
gogarchfilter-methods L oo 45
goGARCHTfit-class e 46
gogarchfit-methods 49
goGARCHforecast-class L 50
gogarchforecast-methods 53
goGARCHroll-class e 54
gogarchroll-methods 56
goGARCHSsIm-class e 57
gogarchsim-methods 59
g0GARCHSpec-class 60
gogarchspec-methods L 61
goload-methods L 62
last-methods L 63
mGARCHTfilter-class 64

mGARCHIfit-class e 64

rmgarch-package 3

mGARCHforecast-class e 65
MGARCHroll-class e 65
MGARCHsImM-class e e 66
mGARCHspec-class e 66
radical L e e 67
varxfit . .. e e e 69
WINATZIN . . . o vt e e e e e e e e e e e e e e e e e e e 72

Index 73

rmgarch-package The rmgarch package
Description

The rmgarch provides a selection of multivariate GARCH models with methods for fitting, filter-
ing, forecasting and simulation with additional support functions for working with the returned
objects. At present, the Generalized Orthogonal GARCH using Independent Components Anal-
ysis (ICA) and Dynamic Conditional Correlation (with multivariate Normal, Laplace and Student
distributions) models are fully implemented, with methods for spec, fit, filter, forecast, simulation,
and rolling estimation and forecasting, as well as specialized functions to calculate and work with
the weighted portfolio conditional density. The Copula-GARCH model is also implemented with
the multivariate Normal and Student distributions, with dynamic (DCC) and static estimation of the
correlation.

Details

The main package functionality, currently supports the GO-GARCH with ICA method, and is avail-
able through the gogarchspec, gogarchfit, gogarchfilter, gogarchforecast, gogarchsimand
gogarchroll functions. The DCC with multivariate Normal, Laplace and Student distributions is
also supported with the main functionality in dccspec, dccfit, dccfilter, dccforecast, dccsim
and dccroll. The Normal and Student Copula-GARCH, with dynamic or static correlation, is im-
plemented with the main functionality in cgarchspec, cgarchfit, cgarchfilter, and cgarchsim.
Usual extractor and support methods for the multivariate GARCH models are documented in the
class of the returned objects.

How to cite this package

Whenever using this package, please cite as

@Manual{Ghalanos_2014,

author = {Alexios Galanos},
title = {{rmgarch}: Multivariate GARCH models.},
year = {20193,

note = {R package version 1.3-6.3}}

4 cGARCHTfilter-class

License

The releases of this package is licensed under GPL version 3.

Author(s)

Alexios Galanos

References

Bollerslev, T. 1990, Modelling the coherence in short-run nominal exchange rates: a multivariate
generalized ARCH model, The Review of Economics and Statistics, 72(3), 498-505.

Broda, S.A. and Paolella, M.S. 2009, CHICAGO: A Fast and Accurate Method for Portfolio Risk
Calculation, Journal of Financial Econometrics 7(4), 412436 .

Cappiello, L., Engle, R.F. and Sheppard, K. 2006, Asymmetric dynamics in the correlations of
global equity and bond returns, Journal of Financial Econometrics 4, 537-572.

Croux, C. and Joossens, K. 2008, Robust estimation of the vector autoregressive model by a least
trimmed squares procedure, COMPSTAT, 489-501.

Chen, Y., Hardle, W., and Spokoiny, V. 2010, GHICA - Risk analysis with GH distributions and
independent components, Journal of Empirical Finance, 17(2), 255-269.

de Athayde, G.M. and Flores Jr, R.G. 2002, On Certain Geometric Aspects of Portfolio Optimisa-
tion with Higher Moments, mimeo.

Engle, R.F. 2002, Dynamic conditional correlation, Journal of Business and Economic Statistics
20, 339-350.

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

Genest, C., Ghoudi, K. and Rivest, L. 1995, A semiparametric estimation procedure of dependence
parameters in multivariate families of distributions, Biometrika, 82, 543-552.

Ghalanos, A., Rossi, E., and Urga, G. (2014). Independent Factor Autoregressive Conditional Den-
sity Model, Econometric Reviews.

Paolella, M.S. 2007, Intermediate Probability - A Computational Approach, Wiley-Interscience.
Schmidt, R., Hrycej, T. and Stutzle 2006, Multivariate distribution models with generalized hyper-
bolic margins, Computational Statistics \& Data Analysis 50(8), 2065-2096.

cGARCHfilter-class class: Copula Filter Class

Description

The class is returned by calling the function cgarchfilter.

Slots

mfilter: Object of class "vector” Multivariate filter list.

model: Object of class "vector"” Model specification list.

cGARCHTfilter-class 5

Extends

Class "mGARCHfilter"”, directly. Class "GARCHfilter", by class "mGARCHfilter", distance 2.
Class "rGARCH", by class "mGARCH(filter", distance 3.

Methods

coef signature(object = "cGARCHfilter"): The coefficient vector (see note).
fitted signature(object = "cGARCHfilter"): The conditional mean filtered data (xts object).
likelihood signature(object = "cGARCHfilter"): The joint likelihood.

rcor signature(object = "cGARCHfilter"): The conditional correlation array with third dimen-
sion labels the time index.

rcov signature(object = "cGARCHfilter"): The conditional covariance array with third dimen-
sion labels the time index.

residuals signature(object = "cGARCHfilter"): The model residuals (xts object).

show signature(object = "cGARCHfilter"): Summary.

sigma signature(object = "cGARCHfilter"): The model conditional sigma (xts object).
rshape signature(object = "cGARCHfilter"): The multivariate distribution shape parameter(s).

rskew signature(object = "cGARCHfilter"): The multivariate distribution skew parameter(s).

Note
The ‘coef’ method takes additional argument ‘type’ with valid values ‘garch’ for the garch param-

eters, ‘dcc’ for the second stage parameters and by default returns all the parameters in a named
vector.

Author(s)

Alexios Galanos

References

Joe, H. Multivariate Models and Dependence Concepts, 1997, Chapman \& Hall, London.
Genest, C., Ghoudi, K. and Rivest, L. A semiparametric estimation procedure of dependence pa-
rameters in multivariate families of distributions, 1995, Biometrika, 82, 543-552.

cgarchfilter-methods

cgarchfilter-methods function: Copula-GARCH Filter

Description

Method for creating a Copula-GARCH filter object.

Usage

cgarchfilter(spec, data, out.sample = @, filter.control = list(n.old = NULL),
spd.control = list(lower = @.1, upper = 0.9, type = "pwm”, kernel = "epanech"),

cluster = NULL,

Arguments

spec

data

out.sample

filter.control

cluster

spd.control

varcoef

realizedVol

Value

varcoef = NULL, realizedVol = NULL, ...)

A cGARCHspec object created by calling cgarchspec with fixed parameters for
the coeffficients.

A multivariate xts data object or one which can be coerced to such.

A positive integer indicating the number of periods before the last to keep for
out of sample forecasting.

Control arguments passed to the filtering routine (see note below).

A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

If the spd transformation was chosen in the specification, the spd.control passes
its arguments to the spdfit routine of the spd package.

If a VAR model was chosen, then this is the VAR coefficient matrix which must
be supplied. No checks are done on its dimension or correctness so it is up to
the user to perform the appropriate checks.

Required xts matrix for the real GARCH model.

A cGARCHfilter object containing details of the Copula-GARCH filter and sharing most of the
methods of the cGARCHf1it class.

Note

The ‘n.old’ option in the filter.control argument is key in replicating conditions of the original
fit. That is, if you want to filter a dataset consisting of an expanded dataset (versus the original used
in fitting), but want to use the same assumptions as the original dataset then the ‘n.old’ argument
denoting the original number of data points passed to the cgarchfit function must be provided.
This is then used to ensure that some calculations which make use of the full dataset (unconditional
starting values for the garch filtering, the dcc model and the copula transformation methods) only

cGARCHTfit-class 7

use the first ‘n.old’ points thus replicating the original conditions making filtering appropriate for
rolling 1-ahead forecasting.
For extensive examples look in the ‘rmgarch.tests’ folder.

Author(s)

Alexios Galanos

cGARCHfit-class class: Copula Fit Class

Description

The class is returned by calling the function cgarchfit.

Slots

mfit: Object of class "vector” Multivariate fit list.

model: Object of class "vector” Model specification list.

Extends

Class "mGARCHfit", directly. Class "GARCHfit", by class "mGARCHfit", distance 2. Class "rGARCH",
by class "mGARCH](it", distance 3.

Methods

coef signature(object = "cGARCHfit"): The coefficient vector (see note).
fitted signature(object = "cGARCHfit"): The conditional mean fitted data (xts object).
likelihood signature(object = "cGARCHfit"): The joint likelihood.

rcor signature(object = "cGARCHfit"): The conditional correlation array with third dimension
labels the time index. A further argument ‘output’ allows to switch between “array” and
“matrix” returned object.

rcov signature(object = "cGARCHfit"): The conditional covariance array with third dimension
labels the time index. A further argument ‘output’ allows to switch between “array” and
“matrix” returned object.

rshape signature(object = "cGARCHfit"): The multivariate distribution shape parameter(s).
rskew signature(object = "cGARCHfit"): The multivariate distribution skew parameter(s).
residuals signature(object = "cGARCHfit"): The model residuals (xts object).

show signature(object = "cGARCHfit"): Summary.

sigma signature(object = "cGARCHfit"): The model conditional sigma (xts object).

8 cgarchfit-methods

Note

The ‘coef’ method takes additional argument ‘type’ with valid values ‘garch’ for the garch param-
eters, ‘dcc’ for the second stage parameters and by default returns all the parameters in a named
vector.

Author(s)

Alexios Galanos

References

Joe, H. Multivariate Models and Dependence Concepts, 1997, Chapman \& Hall, London.
Genest, C., Ghoudi, K. and Rivest, L. A semiparametric estimation procedure of dependence pa-
rameters in multivariate families of distributions, 1995, Biometrika, 82, 543-552.

cgarchfit-methods function: Copula-GARCH Fit

Description

Method for creating a Copula-GARCH fit object.

Usage

cgarchfit(spec, data, spd.control = list(lower = @.1, upper = 0.9, type = "pwm”,
kernel = "epanech"), fit.control = list(eval.se = TRUE, stationarity = TRUE,
scale = FALSE), solver = "solnp”, solver.control = list(), out.sample = 0,
cluster = NULL, fit = NULL, VAR.fit = NULL, realizedVol = NULL,...)

Arguments
spec A cGARCHspec A cGARCHspec object created by calling cgarchspec.
data A multivariate xts data object or one which can be coerced to such.
out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting.
solver Either “nlminb”, “solnp”, “gosolnp” or “Ibfgs”. It can also optionally be a vector

of length 2 with the first solver being used for the first stage univariate GARCH
estimation (in which case the option of “hybrid” is also available).

solver.control Control arguments list passed to optimizer.

fit.control Control arguments passed to the fitting routine. The ‘eval.se’ option determines
whether standard errors are calculated (see details below). The ‘scale’ option is
for the first stage univariate GARCH fitting routine.

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

cgarchfit-methods 9

fit (optional) A previously estimated univariate uGARCHmultifit object (see de-
tails).

VAR.fit (optional) A previously estimated VAR list returned from calling the varxfit
function.

spd.control If the spd transformation was chosen in the specification, the spd.control passes

its arguments to the spdfit routine of the spd package.

realizedVol Required xts matrix for the realGARCH model.

Details

The Copula-GARCH models implemented can either be time-varying of DCC variety else static.
The multivariate Normal and Student distributions are used in the construction of the copulas, and
3 transformation methods are available (parametric, semi-parametric, and empirical). For the semi-
parametric case the ‘spd’ package of the author is available to download from CRAN and fits a
Gaussian kernel in the interior and gpd distribution for the tails (see that package for more details).
The static copula allows for the estimation of the correlation matrix either by Maximum Likelihood
or the Kendall method for the multivariate Student.

Note that the ‘cgarchfit’ method will assign to the global environment the uGARCHmultifit once
that is estimated in order to allow the routine to be restarted should something go wrong (it should
show up as “fitlist’).

Value

A cGARCHf'it Object containing details of the Copula-GARCH fit.

Note

There is no check on the VAR fit list passed to the method so particular care should be exercised
so that the same data used in the fitting routine is also used in the VAR fit routine. This must have
been called with the option postpad ‘constant’. The ability to pass this list of the pre-calculated
VAR model is particularly useful when comparing different models (such as DCC GARCH, GO
GARCH etc) using the same dataset and VAR method (i.e. the same first stage conditional mean
filtration). Though the classical VAR estimation is very fast and may not require this extra step, the
robust method is slow and therefore benefits from calculating this only once.

For extensive examples look in the ‘rmgarch.tests’ folder.

Author(s)

Alexios Galanos

10 cGARCHsim-class

cGARCHsim-class class: Copula Simulation Class

Description

The class is returned by calling the function cgarchsim.

Slots

msim: Object of class "vector” Multivariate simulation list.

model: Object of class "vector"” Model specification list.

Extends

Class "mGARCHsim", directly. Class "GARCHsim", by class "mGARCHsim", distance 2. Class
"rGARCH", by class "mGARCHsim", distance 3.

Methods

fitted signature(object = "cGARCHsim"): The simulated conditional returns matrix given. Takes
optional argument “sim” indicating the simulation run to return (from the m.sim option of the
cgarchsim method.

sigma signature(object = "cGARCHfit"): The simulated conditional sigma matrix given. Takes
optional argument “sim” indicating the simulation run to return (from the m.sim option of the
cgarchsim method.

reor signature(object = "cGARCHsim"): The simulated conditional correlation array (for DCC
type). Takes optional argument “sim” indicating the simulation run to return (from the m.sim
option of the cgarchsim method. A further argument ‘output’ allows to switch between “ar-
ray” and “matrix” returned object.

rcov signature(object = "cGARCHsim"): The simulated conditional covariance array. Takes op-
tional argument “sim” indicating the simulation run to return (from the m.sim option of the
cgarchsim method. A further argument ‘output’ allows to switch between “array” and “ma-
trix” returned object.

show signature(object = "cGARCHsim"): Summary.

Author(s)

Alexios Galanos

References

Joe, H. Multivariate Models and Dependence Concepts, 1997, Chapman \& Hall, London.
Genest, C., Ghoudi, K. and Rivest, L. A semiparametric estimation procedure of dependence pa-
rameters in multivariate families of distributions, 1995, Biometrika, 82, 543-552.

cgarchsim-methods 11

cgarchsim-methods function: Copula-GARCH Simulation

Description

Method for creating a Copula-GARCH simulation object.

Usage

cgarchsim(fit, n.sim = 1000, n.start = @, m.sim = 1,

startMethod = c("unconditional”, "sample"), presigma = NULL, preresiduals = NULL,
prereturns = NULL, preR = NULL, preQ = NULL, preZ = NULL, rseed = NULL,
mexsimdata = NULL, vexsimdata = NULL, cluster = NULL, only.density = FALSE,
prerealized = NULL, ...)

Arguments

fit A cGARCHfit object created by calling cgarchfit.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

startMethod Starting values for the simulation. Valid methods are ‘unconditional’ for the
expected values given the density, and ‘sample’ for the ending values of the
actual data from the fit object. This is mostly related to the univariate GARCH
dynamics.

presigma Allows the starting sigma values to be provided by the user for the univariate
GARCH dynamics.

prereturns Allows the starting return data to be provided by the user for the conditional

mean simulation.

preresiduals Allows the starting residuals to be provided by the user and used in the GARCH
dynamics simulation.

preR Allows the starting correlation to be provided by the user and mostly useful for
the static copula.

preQ Allows the starting ‘DCC-Q’ value to be provided by the user and though unnec-
essary for the first 1-ahead simulation using the “sample” option in the startMethod,
this is key to obtaining a rolling n-ahead forecast type simulation (see details be-
low).

preZ Allows the starting transformed standardized residuals (used in the DCC model)
to be provided by the user and though unnecessary for the first 1-ahead simu-
lation using the “sample” option in the startMethod, this is key to obtaining a
rolling n-ahead forecast type simulation (see details below).

rseed Optional seeding value(s) for the random number generator. This should be of
length equal to m.sim.

12

mexsimdata

vexsimdata

cluster

only.density

prerealized

Details

cgarchsim-methods

A list (equal to the number of asset) of matrices of simulated external regressor-
in-mean data with row length equal to n.sim + n.start. If the fit object contains
external regressors in the mean equation, this must be provided else will be
assumed to be zero.

A list (equal to the number of asset) of matrices of simulated external regressor-
in-variance data with row length equal to n.sim + n.start. If the fit object contains
external regressors in the variance equation, this must be provided else will be
assumed to be zero.

A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

Whether to return only the simulated returns (discrete time approximation to
the multivariate density). This is sometimes useful in order to control memory
management for large simulations not requiring any other information.

Allows the starting realized volatility values to be provided by the user for the
univariate GARCH dynamics.

Since there is no explicit forecasting routine, the user should use this method for incrementally
building up n-ahead forecasts by simulating 1-ahead, obtaining the means of the returns, sigma,
Rho etc and feeding them to the next round of simulation as starting values. The ‘rmgarch.tests’
folder contains specific examples which illustrate this particular point.

Value

A cGARCHsim object containing details of the Copula-GARCH simulation.

Author(s)

Alexios Galanos

References

Joe, H. Multivariate Models and Dependence Concepts, 1997, Chapman \& Hall, London.
Genest, C., Ghoudi, K. and Rivest, L. A semiparametric estimation procedure of dependence pa-
rameters in multivariate families of distributions, 1995, Biometrika, 82, 543-552.

c¢GARCHspec-class 13

cGARCHspec-class class: Copula Specification Class

Description

The class is returned by calling the function cgarchspec.

Slots

model: Object of class "vector” The multivariate model specification

umodel: Object of class "uGARCHmultispec” The univariate model specification.

Extends

Class "mGARCHspec”, directly. Class "GARCHspec", by class "mGARCHspec", distance 2. Class
"rGARCH", by class "mGARCHSspec", distance 3.

Methods

show signature(object = "cGARCHspec”): Summary.

setfixed<- signature(object = "cGARCHspec"”, value = "vector"): Set fixed second stage pa-
rameters.

setstart<- signature(object = "cGARCHspec"”, value = "vector”): Set starting second stage
parameters.

Author(s)

Alexios Galanos

References

Joe, H. Multivariate Models and Dependence Concepts, 1997, Chapman \& Hall, London.
Genest, C., Ghoudi, K. and Rivest, L. A semiparametric estimation procedure of dependence pa-
rameters in multivariate families of distributions, 1995, Biometrika, 82, 543-552.

14 cgarchspec-methods

cgarchspec-methods function: Copula-GARCH Specification

Description

Method for creating a Copula-GARCH specification object prior to fitting.

Usage

cgarchspec(uspec, VAR = FALSE, robust = FALSE, lag = 1, lag.max = NULL,
lag.criterion = c("AIC", "HQ", "SC", "FPE"), external.regressors = NULL,
robust.control = list(gamma = 0.25, delta = 0.01, nc = 10, ns = 500),
dccOrder = c(1, 1), asymmetric = FALSE,

distribution.model = list(copula = c("mvnorm”, "mvt"),
method = c("Kendall”, "ML"), time.varying = FALSE,
transformation = c("parametric”, "empirical”, "spd")),

start.pars = list(), fixed.pars = list())

Arguments
uspec A uGARCHmultispec object created by calling multispec on a list of univariate
GARCH specifications.
VAR Whether to fit a VAR model for the conditional mean.
robust Whether to use the robust version of VAR.
lag The VAR lag.
lag.max The maximum VAR lag to search for best fit.

lag.criterion The criterion to use for choosing the best lag when lag.max is not NULL.

external.regressors
Allows for a matrix of common pre-lagged external regressors for the VAR op-
tion.

robust.control The tuning parameters to the robust regression including the proportion to trim
(“gamma”), the critical value for reweighted estimator (“delta”), the number of
subsets (“ns”) and the number of C-steps (“nc”.

dccOrder The DCC autoregressive order.
asymmetric Whether to include an asymmetry term to the DCC model (thus estimating the
aDCC).

distribution.model
The Copula distribution model. Currently the multivariate Normal and Student
Copula are supported.

time.varying Whether to fit a dynamic DCC Copula.

transformation The type of transformation to apply to the marginal innovations of the GARCH
fitted models. Supported methods are parametric (Inference Function of Mar-
gins), empirical (Pseudo ML), and Semi-Parametric using a kernel interior and
GPD tails (via the ‘spd’ package).

cordist 15

start.pars (optional) Starting values for the DCC parameters (starting values for the uni-
variate garch specification should be passed directly via the ‘uspec’ object).
fixed.pars (optional) Fixed DCC parameters.
Details

The transformation method allows for parametric (Inference-Functions for Margins), empirical
(Pseudo-Likelihood) and semi-parametric (via the spd package).

When the Student Copula is jointly estimated with student margins having so that a common shape
parameter is obtained, this results in the multivariate Student distribution. When estimating the
Student Copula with disparate margins, a meta-student distribution is obtained. Additionally, the
correlation parameter in the static Student Copula may be estimated either by Kendall’s tau trans-
formation or Maximum Likelihood.

The robust option allows for a robust version of VAR based on the multivariate Least Trimmed
Squares Estimator described in Croux and Joossens (2008).

Value

A cGARCHspec object containing details of the Copula-GARCH specification.

Author(s)

Alexios Galanos

cordist A Correlation Distance Measure

Description

Given an array of correlation snapshots in time, returns a matrix of some rolling distance measure
on the correlations.

Usage

n on n o n non n o n

cordist(R, distance = c("ma”,"ms","meda"”, "meds"”,"eigen”, "cmd"), n = 25,
plot = TRUE, dates = NULL, title = NULL)

Arguments
R An array of correlations.
distance The measure to use to capture the change between 2 correlation matrices (see
details).
n The distance between 2 correlation matrices.
plot Whether to create a heatmap plot of the result.
dates A POSIXct vector of dates to use for the heatmap (recommend to supply).

title Title for the heatmap plot.

16 DCCfilter-class

Details

This function provides for a visualization of dynamic correlation distance between periods with
a number of plausible measures including “ma” (mean absolute), “ms” (mean squared), “meda”
(median absolute), “meds” (median squared) “eigen” (largest eigenvalue difference) and “cmd”
(correlation matrix distance). See the references for more details.

Value

A symmetric matrix of the rolling distance measure for each period.

Author(s)

Alexios Galanos

References

Munnix, M. C., Shimada, T., Schafer, R., Leyvraz, F., Seligman, T. H., Guhr, T., & Stanley, H. E.
(2012). Identifying states of a financial market. Scientific Reports 2.

Herdin, M., Czink, N., Ozcelik, H., & Bonek, E. (2005). Correlation matrix distance, a meaningful
measure for evaluation of non-stationary MIMO channels. Vehicular Technology Conference, 2005,
IEEE 61st, 1, 136-140.

DCCfilter-class class: DCC Filter Class

Description

The class is returned by calling the function dccfilter.

Slots

mfilter: Object of class "vector”. Multivariate filter list.

model: Object of class "vector”. Model specification list.

Extends

Class "mGARCHfilter"”, directly. Class "GARCHfilter”, by class "mGARCHfilter", distance 2.
Class "rGARCH", by class "mGARCHfilter", distance 3.

Methods

coef signature(object = "DCCfilter") The coefficient vector (see note).

likelihood signature(object = "DCCfilter"): The joint likelihood.

rshape signature(object = "DCCfilter”): The multivariate distribution shape parameter(s).
rskew signature(object = "DCCfilter"): The multivariate distribution skew parameter(s).

fitted signature(object = "DCCfilter"”): The filtered conditional mean xts object.

dccfilter-methods 17

sigma signature(object = "DCCfilter"): The filtered conditional sigma xts object.

residuals signature(object = "DCCfilter"): The filtered conditional mean residuals xts object.

plot signature(x = "DCCfilter”, y = "missing"”): Plot method, given additional arguments ‘se-
ries’ and ‘which’.

infocriteria signature(object = "DCCfilter"): Information criteria.

rcor signature(object = "DCCfilter™): The filtered dynamic conditional correlation array given
additional argument ‘type’ (either “R” for the correlation else will return the “Q” matrix). The
third dimension label of the array gives the time index (from which it is then possible to con-
struct pairwise xts objects for example). A further argument ‘output’ allows to switch between
“array” and “matrix” returned object.

rcov signature(object = "DCCfilter"”): The filtered dynamic conditional covariance array. The
third dimension label of the array gives the time index (from which it is then possible to con-
struct pairwise xts objects for example). A further argument ‘output’ allows to switch between
“array” and “matrix” returned object.

show signature(object = "DCCfilter”): Summary.

nisurface signature(object = "DCCfilter"”): The news impact surface plot given additional
arguments ‘type’ with either “cov” or “cor” (for the covariance and correlation news impact
respectively), ‘pair’ denoting the asset pair (defaults to c(1,2)), ‘plot’ (logical) and ‘plot.type’
with a choice of either “surface” or “contour”.

Note

The ‘coef’ method takes additional argument ‘type’ with valid values ‘garch’ for the univariate
garch parameters, ‘dcc’ for the second stage dcc parameters and by default returns all the parameters
in a named vector.

Author(s)

Alexios Galanos

References

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

dccfilter-methods function: DCC-GARCH Filter

Description

Method for creating a DCC-GARCH filter object.

Usage

dccfilter(spec, data, out.sample = @, filter.control = list(n.old = NULL),
cluster = NULL, varcoef = NULL, realizedVol = NULL, ...)

18

Arguments

spec

data

out.sample

filter.control

cluster

varcoef

realizedVol

Value

DCC(Cfit-class

A DCCspec object created by calling dccspec with fixed parameters for the co-
efficients.

A multivariate data object of class xts, or one which can be coerced to such.

A positive integer indicating the number of periods before the last to keep for
out of sample forecasting.

Control arguments passed to the filtering routine (see note.

A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

If a VAR model was chosen, then this is the VAR coefficient matrix which must
be supplied. No checks are done on its dimension or correctness so it is up to
the user to perform the appropriate checks.

Required xts matrix for the real GARCH model.

A DCCfilter object containing details of the DCC-GARCH filter.

Note

The ‘n.old’ option in the filter.control argument is key in replicating conditions of the original
fit. That is, if you want to filter a dataset consisting of an expanded dataset (versus the original used
in fitting), but want to use the same assumptions as the original dataset then the ‘n.old” argument
denoting the original number of data points passed to the dccfit function must be provided. This is
then used to ensure that some calculations which make use of the full dataset (unconditional starting
values for the garch filtering and the dcc model) only use the first ‘n.old’ points thus replicating the
original conditions making filtering appropriate for rolling 1-ahead forecasting.

For extensive examples look in the ‘rmgarch.tests’ folder.

Author(s)

Alexios Galanos

DCCfit-class

class: DCC Fit Class

Description

The class is returned by calling the function dccfit.

Slots

mfit: Object of class "vector” Multivariate filter list.

model: Object of class "vector"” Model specification list.

DCC(Cfit-class 19

Extends

Class "mGARCHfit", directly. Class "GARCHfit", by class "mGARCHT(it", distance 2. Class "rGARCH",
by class "mGARCHT(it", distance 3.

Methods

coef signature(object = "DCCfit") The coefficient vector (see note).

likelihood signature(object = "DCCfit"): The joint likelihood.

rshape signature(object = "DCCfit"): The multivariate distribution shape parameter(s).

rskew signature(object = "DCCfit"): The multivariate distribution skew parameter(s).

fitted signature(object = "DCCfit"): The fitted conditional mean xts object.

sigma signature(object = "DCCfit"): The fitted conditional GARCH sigma xts object.

residuals signature(object = "DCCfit"): The fitted conditional mean residuals xts object.

plot signature(x = "DCCfit"”, y = "missing”): Plot method, given additional arguments ‘se-
ries’ and ‘which’.

infocriteria signature(object = "DCCfit"): Information criteria.

rcor signature(object = "DCCfit"): The fitted dynamic conditional correlation array given ad-
ditional arguments ‘type’ (either “R” for the correlation else will return the Q matrix). The
third dimension label of the array gives the time index (from which it is then possible to con-
struct pairwise xts objects for example). The argument ‘output’ can be either “array” (default)
or “matrix” in which case the array is flattened and the lower diagonal time varying values are
returned (and if a date exists, then the returned object is of class xts).

rcov signature(object = "DCCfit"): The fitted dynamic conditional covariance array. The third
dimension label of the array gives the time index (from which it is then possible to construct
pairwise xts objects for example). The argument ‘output’ can be either “array” (default) or
“matrix” in which case the array is flattened and the lower and main diagonal time varying
values are returned (and if a date exists, then the returned object is of class xts).

show signature(object = "DCCfit"): Summary.

nisurface signature(object ="DCCfit"): The news impact surface plot given additional ar-
guments ‘type’ with either “cov” or “cor” (for the covariance and correlation news impact
respectively), ‘pair’ (defaults to c(1,2)), ‘plot’ (logical) and ‘plot.type’ with a choice of either
“surface” or “contour”.

Note

The ‘coef’ method takes additional argument ‘type’ with valid values ‘garch’ for the univariate
garch parameters, ‘dcc’ for the second stage dcc parameters and by default returns all the parameters
in a named vector.

Author(s)

Alexios Galanos

20

References

dccfit-methods

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

dccfit-methods

function: DCC-GARCH Fit

Description

Method for creating a DCC-GARCH fit object.

Usage

dccfit(spec, data, out.sample = @, solver = "solnp”, solver.control = list(),
fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE),

cluster = NULL,

Arguments

spec
data

out.sample

solver

solver.control

fit.control

cluster

fit

VAR.fit

realizedVol

fit = NULL, VAR.fit = NULL, realizedVol = NULL, ...)

A DCCspec object created by calling dccspec.
A multivariate data object of class xts or one which can be coerced to such.

A positive integer indicating the number of periods before the last to keep for
out of sample forecasting.

9% ¢

Either “nlminb”, “solnp”, “gosolnp” or “Ibfgs”. It can also optionally be a vector
of length 2 with the first solver being used for the first stage univariate GARCH
estimation (in which case the option of “hybrid” is also available).

Control arguments list passed to optimizer.

Control arguments passed to the fitting routine. The ‘eval.se’ option determines
whether standard errors are calculated (see details below). The ‘stationarity’
option is for the univariate stage GARCH fitting routine, whilst for the second
stage DCC this is imposed by design. The ‘scale’ option is also for the first stage
univariate GARCH fitting routine.

A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

(optional) A previously estimated univariate UGARCHmultifit object (see de-
tails).

(optional) A previously estimated VAR object returned from calling the varxfit
function.

Required xts matrix for the realGARCH model.

DCCforecast-class 21

Details

The 2-step DCC estimation fits a GARCH-Normal model to the univariate data and then proceeds
to estimate the second step based on the chosen multivariate distribution. Because of this 2-step
approach, standard errors are expensive to calculate and therefore the use of parallel functionality,
built into both the fitting and standard error calculation routines is key. The switch to turn off
the calculation of standard errors through the ‘fit.control’ option could be quite useful in rolling
estimation such as in the dccroll routine.

The optional ‘fit’ argument allows to pass your own UGARCHmultifit object instead of having
the routine estimate it. This is very useful in cases of multiple use of the same fit and problems in
convergence which might require a more hands on approach to the univariate fitting stage. However,
it is up to the user to ensure consistency between the ‘fit’ and supplied ‘spec’.

Value

A DCCfit object containing details of the DCC-GARCH fit.

Note

There is no check on the VAR fit list passed to the method so particular care should be exercised so
that the same data used in the fitting routine is also used in the VAR fit routine. This this must have
been called with the option postpad ‘constant’. The ability to pass this list of the pre-calculated
VAR model is particularly useful when comparing different models (such as copula-GARCH, GO-
GARCH etc) using the same dataset and VAR method (i.e. the same first stage conditional mean
filtration). Though the classical VAR estimation is very fast and may not require this extra step, the
robust method is slow and therefore benefits from calculating this only once.

For extensive examples look in the ‘rmgarch.tests’ folder.

Author(s)

Alexios Galanos

DCCforecast-class class: DCC Forecast Class

Description

The class is returned by calling the function dccforecast.

Slots

mforecast: Object of class "vector” Multivariate forecast list.

model: Object of class "vector"” Model specification list.

Extends

Class "mGARCHforecast"”, directly. Class "GARCHforecast”, by class "mGARCHforecast", dis-
tance 2. Class "rGARCH", by class "mGARCHforecast", distance 3.

22 dccforecast-methods

Methods

rshape signature(object = "DCCforecast”): The multivariate distribution shape parameter(s).
rskew signature(object = "DCCforecast”): The multivariate distribution skew parameter(s).

fitted signature(object = "DCCforecast”): The conditional mean forecast array of dimensions
n.ahead x n.assets by (n.roll+1). The thirds dimension of the array has the T+0 index label.

sigma signature(object = "DCCforecast”): The conditional sigma forecast array of dimen-
sions n.ahead x n.assets by (n.roll+1). The thirds dimension of the array has the T+0 index
label.

plot signature(x = "DCCforecast”, y = "missing"”): Plot method, given additional arguments
‘series’ and ‘which’.

rcor signature(object = "DCCforecast”): The forecast dynamic conditional correlation list of
arrays of length (n.roll+1), with each array of dimensions n.assets x n.assets x n.ahead. The
method takes on one additional argument ‘type’ (either “R” for the correlation else will re-

turn the DCC Q matrix). A further argument ‘output’ allows to switch between “array” and
“matrix” returned object.

rcov signature(object = "DCCforecast"”): The forecast dynamic conditional correlation list of
arrays of length (n.roll+1), with each array of dimensions n.assets x n.assets x n.ahead. A
further argument ‘output’ allows to switch between “array” and “matrix” returned object.

show signature(object = "DCCforecast”): Summary.

Author(s)

Alexios Galanos

References

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

dccforecast-methods function: DCC-GARCH Forecast

Description

Method for creating a DCC-GARCH forecast object.

Usage

dccforecast(fit, n.ahead = 1, n.roll = 0,
external.forecasts = list(mregfor = NULL, vregfor = NULL), cluster = NULL, ...)

dccforecast-methods 23

Arguments
fit A DCCfit object created by calling dccfit.
n.ahead The forecast horizon.
n.roll The no. of rolling forecasts to create beyond the first one (see details).

external.forecasts

A list with forecasts for the external regressors in the mean and/or variance
equations if specified (see details).

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

Details

When using n.roll, it is assumed that dccfit was called with argument ‘out.sample’ being large
enough to cover n-rolling forecasts.

When n.roll = 0, all forecasts are based on an unconditional n-ahead forecast routine based on the
approximation method described in ENGLE and SHEPPARD (2001) paper (see reference below).
If any external regressors are present, then the user must pass in their unconditional forecasts in
the ‘external.forecasts’ list, as matrices with dimensions equal to n.ahead x n.assets. This assumes
that the univariate GARCH specifications share common external regressors (this may change in
the future).

When n.roll>0 and n.ahead = 1, then this is a pure rolling forecast based on the available out.sample
data provided for in the call to the fit routine. It is also assumed that if any external regressors were
passed to the fit routine that they contained enough values to cover the out.sample period so that
they could be used in this forecast scenario.

The case of n.roll > 0 AND n.ahead > 1 is not implemented.

Value

A DCCforecast object containing details of the DCC-GARCH forecast.

Author(s)

Alexios Galanos

References

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

24

DCCroll-class

DCCroll-class class: DCC Roll Class

Description

The class is returned by calling the function dccroll.

Slots

mforecast: Object of class "vector” Multivariate forecast list.

model: Object of class "vector"” Model specification list.

Extends

Class "mGARCHroll”, directly. Class "GARCHroll"”, by class "mGARCHroll", distance 2. Class
"rGARCH", by class "mGARCHTroll", distance 3.

Methods

coef signature(object = "DCCroll"): The coefficient array across the rolling estimations with
a T+0 3rd dimension index label.

fitted signature(object = "DCCroll”): The conditional mean forecast xts object (with the actual
T+i forecast dates as index).

likelihood signature(object = "DCCroll”): The log-likelihood across rolling estimations.

plot signature(x ="DCCroll”, y = "missing”): Plot method, given additional arguments ‘se-
ries’ and ‘which’.

rcor signature(object = "DCCroll”): The forecast dynamic conditional correlation array, with
the T+ forecast index in the 3rd dimension label. Optional argument ‘type’ determines

whether to return “R” for the correlation else will the DCC Q matrix. A further argument
‘output’ allows to switch between “array” and “matrix” returned object.

rcov signature(object = "DCCroll”): The forecast dynamic conditional covariance array, with
the T+i forecast index in the 3rd dimension label. A further argument ‘output’ allows to switch
between “array” and “matrix” returned object.

rshape signature(object = "DCCroll”): The multivariate distribution shape parameter(s).
rskew signature(object = "DCCroll"): The multivariate distribution skew parameter(s).
show signature(object = "DCCroll”): Summary.

sigma signature(object = "DCCroll”): The conditional sigma forecast xts object (with the ac-
tual T+i forecast dates as index).

Author(s)

Alexios Galanos

dccroll-methods 25

References

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

dccroll-methods function: DCC-GARCH Rolling Forecast

Description

Method for creating a DCC-GARCH rolling forecast object.

Usage
dccroll(spec, data, n.ahead = 1, forecast.length = 50, refit.every = 25,
n.start = NULL, refit.window = c("recursive”, "moving"”), window.size = NULL,
solver = "solnp"”, solver.control = list(),

fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE),
cluster = NULL, save.fit = FALSE, save.wdir = NULL, realizedVol = NULL,
clusterOnAssets=FALSE, ...)

Arguments
spec A DCCspec object with fixed parameters.
data A multivariate xts dataset or one which can be coerced to such.
n.ahead The number of periods to forecast.

forecast.length
The length of the total forecast for which out of sample data from the dataset
will be used for testing.

n.start Instead of forecast.length, this determines the starting point in the dataset from
which to initialize the rolling forecast.

refit.every Determines every how many periods the model is re-estimated.

refit.window Whether the refit is done on an expanding window including all the previous
data or a moving window where all previous data is used for the first estimation
and then moved by a length equal to refit.every (unless the window.size option
is used instead).

window.size If not NULL, determines the size of the moving window in the rolling estima-
tion, which also determines the first point used.

solver The solver to use.

fit.control Control parameters parameters passed to the fitting function.

solver.control Control parameters passed to the solver.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

26 DCCsim-class

save.fit Whether to save the fitted objects of class DCCfit during the estimation of each
(“refit.every”). If true, the directory to save must be provided. The function will
not save this by default for reasons of memory management, but can save it as
an “.rda” file in the user’s chosen directory for further analysis.

save.wdir If “save.fit” is true, the directory in which to save the DCCfit objects (1 for each
“refit.every”).

realizedVol Required xts matrix for the real GARCH model.
clusterOnAssets

If a cluster object is provided, use parallel resources on the univariate estimation
(TRUE) else on the rolling windows (FALSE).

Value

A DCCroll object containing details of the DCC-GARCH rolling forecast.

Author(s)

Alexios Galanos

DCCsim-class class: DCC Forecast Class

Description

The class is returned by calling the function dccsim.

Slots

msim: Object of class "vector” Multivariate simulation list.

model: Object of class "vector” Model specification list.

Extends

Class "mGARCHsim", directly. Class "GARCHsim", by class "mGARCHsim", distance 2. Class
"rGARCH", by class "mGARCHsim", distance 3.

Methods

fitted signature(object = "DCCsim"”): The conditional mean simulated data matrix given addi-
tional argument ‘sim’ denoting the simulation run (m. sim) to return values for.

rcor signature(object = "DCCsim”): The simulated dynamic conditional correlation array given
additional arguments ‘sim’ denoting the simulation run (m. sim) to return values for, and ‘type’
(either “R” for the correlation else will return the Q matrix). A further argument ‘output’
allows to switch between “array” and “matrix” returned object.

dccsim-methods 27

recov signature(object = "DCCsim"): The simulated dynamic conditional covariance array given
additional argument ‘sim’ denoting the simulation run (m. sim) to return values for. A further
argument ‘output’ allows to switch between “array” and “matrix” returned object.

sigma signature(object = "DCCsim"): The univariate simulated conditional sigma matrix given
additional argument ‘sim’ (m. sim) denoting the simulation run to return values for.

show signature(object = "DCCsim”): Summary.

Author(s)

Alexios Galanos

References

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

dccsim-methods function: DCC-GARCH Simulation

Description

Method for creating a DCC-GARCH simulation object.

Usage

dccsim(fitORspec, n.sim = 1000, n.start = @, m.sim = 1,

startMethod = c("unconditional”, "sample"), presigma = NULL, preresiduals = NULL,
prereturns = NULL, preQ = NULL, preZ = NULL, Qbar = NULL, Nbar = NULL,

rseed = NULL, mexsimdata = NULL, vexsimdata = NULL, cluster = NULL,

VAR.fit = NULL, prerealized = NULL, ...)
Arguments

fitORspec A DCCspec or DCCfit object created by calling either dccspec with fixed pa-
rameters or dccfit.

n.sim The simulation horizon.

n.start The burn-in sample.

m.sim The number of simulations.

startMethod Starting values for the simulation. Valid methods are “unconditional” for the

expected values given the density, and “sample” for the ending values of the
actual data from the fit object (for the dispatch method using a specification,
“sample” is not relevant).

presigma Allows the starting sigma values to be provided by the user for the univariate
GARCH dynamics.

28 dccsim-methods

prereturns Allows the starting return data to be provided by the user for the conditional
mean simulation.

preresiduals Allows the starting residuals to be provided by the user and used in the GARCH
dynamics simulation.

preQ Allows the starting ‘DCC-Q’ value to be provided by the user and though unnec-
essary for the first 1-ahead simulation using the “sample” option in the startMethod,
this is key to obtaining a rolling n-ahead forecast type simulation (see details be-
low).

preZ Allows the starting standardized residuals to be provided by the user and though
unnecessary for the first 1-ahead simulation using the “sample” option in the
startMethod, this is key to obtaining a rolling n-ahead forecast type simulation
(see details below).

Qbar The DCC dynamics unconditional Q matrix, required for the specification dis-
patch method.
Nbar The aDCC dynamics unconditional asymmetry matrix, required for the specifi-

cation dispatch method.

rseed Optional seeding value(s) for the random number generator. For m.sim>1, it
is possible to provide either a single seed to initialize all values, or one seed
per separate simulation (i.e. m.sim seeds). However, in the latter case this may
result in some slight overhead depending on how large m.sim is.

mexsimdata A list (equal to the number of asset) of matrices of simulated external regressor-
in-mean data with row length equal to n.sim + n.start. If the fit object contains
external regressors in the mean equation, this must be provided else will be
assumed to be zero.

vexsimdata A list (equal to the number of asset) of matrices of simulated external regressor-
in-variance data with row length equal to n.sim + n.start. If the fit object contains
external regressors in the variance equation, this must be provided else will be
assumed to be zero.

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

VAR.fit An VAR fit list returned from calling the varxfilter or varxfit function with
postpad set to “constant”. This is required for the specification dispatch method.

prerealized Allows the starting realized volatility values to be provided by the user for the
univariate GARCH dynamics.

Details

In order to pass a correct specification to the filter routine, you must ensure that it contains the
appropriate ‘fixed.pars’ in both the multivariate DCC part of the specification as well as the multiple
univariate specification part, for which the method setfixed<- should be used.

Value

A DCCsim object containing details of the DCC-GARCH simulation.

DCCspec-class 29

Author(s)

Alexios Galanos

DCCspec-class class: DCC Specification Class

Description

The class is returned by calling the function dccspec.

Slots

model: Object of class "vector” The multivariate model specification list.

umodel: Object of class "vector” The univariate model specification list.

Extends

Class "mGARCHspec”, directly. Class "GARCHspec”, by class "mGARCHspec", distance 2. Class
"rGARCH", by class "mGARCHSspec", distance 3.

Methods

setfixed<- signature(object = "DCCspec”, value = "vector"”): Set fixed second stage param-
eters.

setstart<- signature(object = "DCCspec”, value = "vector"): Set starting second stage pa-
rameters.

show signature(object = "DCCspec”): Summary.

Note

The ‘umodel’ list is absorbed into the ‘model’ list in all other DCC classes.

Author(s)

Alexios Galanos

References

Croux, C. and Joossens, K. 2008, Robust estimation of the vector autoregressive model by a least
trimmed squares procedure, COMPSTAT, 489-501.

Cappiello, L., Engle, R.F. and Sheppard, K. 2006, Asymmetric dynamics in the correlations of
global equity and bond returns, Journal of Financial Econometrics 4, 537-572.

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

30

dccspec-methods

dccspec-methods

function: DCC-GARCH Specification

Description

Method for creating a DCC-GARCH specification object prior to fitting.

Usage

dccspec(uspec, VAR = FALSE, robust = FALSE, lag = 1, lag.max = NULL,
lag.criterion = c("AIC", "HQ", "SC", "FPE"), external.regressors = NULL,

robust.control

= list("gamma” = 0.25, "delta” = 0.01, "nc” = 10, "ns" = 500),

dccOrder = c(1,1), model = c("DCC", "aDCC", "FDCC"), groups = rep(1, length(uspec@spec)),
distribution = c("mvnorm”, "mvt"”, "mvlaplace”), start.pars = list(), fixed.pars = list())

Arguments

uspec

VAR
robust
lag
lag.max

lag.criterion

A uGARCHmultispec object created by calling multispec on a list of univariate
GARCH specifications.

Whether to fit a VAR model for the conditional mean.
Whether to use the robust version of VAR.

The VAR lag.

The maximum VAR lag to search for best fit.

The criterion to use for choosing the best lag when lag.max is not NULL.

external.regressors

robust.control

dccOrder

model

groups

distribution

start.pars

fixed.pars

Allows for a matrix of common pre-lagged external regressors for the VAR op-
tion.

The tuning parameters to the robust regression including the proportion to trim
(“gamma”), the critical value for re-weighted estimator (“delta”), the number of
subsets (“ns”) and the number of C-steps (“nc”.

The DCC autoregressive order.

The DCC model to use, with a choice of the symmetric DCC, asymmetric
(aDCC) and the Flexible DCC (FDCC). See notes for more details.

The groups corresponding to each asset in the FDCC model, where these are
assumed and checked to be contiguous and increasing (unless only 1 group).

The multivariate distribution. Currently the multivariate Normal, Student and
Laplace are implemented, and only the Normal for the FDCC model.

(optional) Starting values for the DCC parameters (starting values for the uni-
variate garch specification should be passed directly via the ‘uspec’ object).

(optional) Fixed DCC parameters. This is required in the dccfilter, dccforecast,
dccsim with spec, and dccroll methods.

DCCtest 31

Details

The robust option allows for a robust version of VAR based on the multivariate Least Trimmed
Squares Estimator described in Croux and Joossens (2008).

Value

A DCCspec object containing details of the DCC-GARCH specification.

Note

The FDCC model of Billio, Caporin and Gobbo (2006) allows different DCC parameters to govern
the dynamics of the correlation of distinct groups. The drawback is a somewhat larger parameter set,
and no correlation targeting. Still, it remains a feasible model for not too large a number of groups,
and avoids the unrealistic assumption, particularly for large datasets, of one parameter governing
all the dynamics, as in the DCC model. Note that the group indices must be increasing (unless all
1), which means that you should arrange your dataset so that the assets are ordered by their groups.

Author(s)

Alexios Galanos

References

Billio, M., Caporin, M., & Gobbo, M. 2006, Flexible dynamic conditional correlation multivariate
GARCH models for asset allocation, Applied Financial Economics Letters, 2(02), 123-130.
Croux, C. and Joossens, K. 2008, Robust estimation of the vector autoregressive model by a least
trimmed squares procedure, COMPSTAT, 489-501.

Cappiello, L., Engle, R.F. and Sheppard, K. 2006, Asymmetric dynamics in the correlations of
global equity and bond returns, Journal of Financial Econometrics 4, 537-572.

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

DCCtest Engle and Sheppard Test of Dynamic Correlation

Description

A test of non-constant correlation based on Engle and Sheppard (2001).

Usage

DCCtest(Data, garchOrder = c(1,1), n.lags = 1, solver = "solnp",
solver.control = list(), cluster = NULL, Z = NULL)

32 dji30retw

Arguments
Data A multivariate data matrix.
garchOrder The first stage common GARCH order.
n.lags The number of lags to test for the presence of non-constant correlation.
solver Either “solnp” or “nlminb” .

solver.control Control arguments list passed to optimizer.

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

Z (Optional) The standardized residuals from a constant correlation model. If sup-
plied the model is not estimated since this is the only input the test requires.

Details

The test effectively equates to estimating a multivariate dataset using the Constant Conditional Cor-
relation (CCC) model of Bollerslev (1990) and after which the standardized residuals (standardized
by the symmetric square root decomposition of the estimated constant correlation matrix) should
be i.i.d. with covariance the identity matrix. Testing for this can be done using a series of artifi-
cial regressions on the outer and lagged product of these residuals and a constant. In the rmgarch
package, the CCC model is calculated using a static GARCH copula (Normal) model.

Value

A list with the proposed Null hypothesis (HO), the test statistic and its p-value.

Author(s)

Alexios Galanos

References

Bollerslev, T. 1990, Modelling the coherence in short-run nominal exchange rates: a multivariate
generalized ARCH model, The Review of Economics and Statistics, 72(3), 498-505.

Engle, R.F. and Sheppard, K. 2001, Theoretical and empirical properties of dynamic conditional
correlation multivariate GARCH, NBER Working Paper.

dji3eretw data: Dow Jones 30 Constituents Closing Value log Weekly Return

Description

Dow Jones 30 Constituents closing value weekly (Friday) log returns from 1987-03-16 to 2009-
02-03 from Yahoo Finance. Note that AIG was replaced by KFT (Kraft Foods) on September 22,
2008. This is not reflected in this data set as that would bring the starting date of the data to 2001.
When data was not available for a Friday, the closest previous close for which data was available
was used.

fastica 33

Usage

data(dji3oretw)

Format

A data.frame containing 30x1141 observations.

Source

Yahoo Finance

fastica Fast Fixed Point ICA

Description

The fast fixed point algorithm for independent component analysis and projection pursuit based on
the direct translation to R of the FastICA program of the original authors at the Helsinki University
of Technology.

Usage

fastica(X, approach = c("symmetric”, "deflation”), n.comp = dim(X)[2], demean = TRUE,
pca.cov = c("ML", "LW", "ROB", "EWMA"), gfun = c("pow3"”, "tanh"”, "gauss", "skew"),
finetune = c("none”, "pow3", "tanh", "gauss"”, "skew"), tanh.par =1, gauss.par =1,
step.size = 1, stabilization = FALSE, epsilon = 1e-4, maxiterl = 1000, maxiter2 =5,
A.init = NULL, pct.sample = 1, firstEig = NULL, lastEig = NULL,

pcaE = NULL, pcaD = NULL, whiteSig = NULL, whiteMat = NULL, dewhiteMat = NULL,
rseed = NULL, trace = FALSE, ...)

Arguments

X The multidimensional signal matrix, where each column of matrix represents
one observed signal.

approach The decorrelation approach to use, with “symmetric” estimating the components
in parallel while “deflation” estimating one-by-one as in projection pursuit.

n.comp Number of independent components to estimate, defaults to the dimension of
the data (rows). Is overwritten by firstEig and lastEig.

demean (Logical) Whether the data should be centered.

pca.cov The method to use for the calculation of the covariance matrix during the PCA

whitening phase. “ML” is the standard maximum likelihood method, “LW”
is the Ledoit and Wolf method, “ROB” is the robust method from the MASS
package and “EWMA” an exponentially weighted moving average estimator.
Optional parameters passed via the (...) argument.

gfun The nonlinearity algorithm to use in the fixed-point algorithm.

34

finetune
tanh.par
gauss.par

step.size

stabilization

epsilon
maxiterl
maxiter2

A.init

pct.sample

firstEig

lastEig

pcak

pcaD
whiteSig
whiteMat
dewhiteMat

rseed

trace

Details

fastica

The nonlinearity algorithm for fine-tuning.
Control parameter used when nonlinearity algorithm equals “tanh”.
Control parameter used when nonlinearity algorithm equals “gauss”.

Step size. If this is anything other than 1, the program will use the stabilized
version of the algorithm.

Controls whether the program uses the stabilized version of the algorithm. If
the stabilization is on, then the value of step.size can momentarily be halved
if the program estimates that the algorithm is stuck between two points (this is
called a stroke). Also if there is no convergence before half of the maximum
number of iterations has been reached then the step.size will be halved for the
rest of the rounds.

Stopping criterion. Default is 0.0001.
Maximum number of iterations for gfun algorithm.
Maximum number of iterations for finetune algorithm.

Initial guess for the mixing matrix A. Defaults to a random (standard normal)
filled matrix (no.signals by no.factors).

Percentage [0-1] of samples used in one iteration. Samples are chosen at ran-
dom.

This and lastEig specify the range for eigenvalues that are retained, firstEig
is the index of largest eigenvalue to be retained. Making use of this option
overwrites n.comp.

This is the index of the last (smallest) eigenvalue to be retained and overwrites
n.comp argument.

Optionally provided eigenvector (must also supply pcaD).
Optionally provided eigenvalues (must also supply pcaE).
Optionally provided Whitened signal.

Optionally provided Whitening matrix (no.factors by no.signals).
Optionally provided dewhitening matrix (no.signals by no.factors).

Optionally provided seed to initialize the mixing matrix A (when A.init not
provided).

To report progress in the console, set this to “TRUE’.

Optional arguments passed to the pca.cov methods.

The fastica program is a direct translation into R of the FastICA Matlab program of Gaevert, Hurri,
Saerelae, and Hyvaerinen with some extra features. All computations are currently implemented in
R so for very large dimensional sets alternative implementations may be faster. Porting part of the
code to C++ may be implemented in a future version.

fastica 35

Value

A list containing the following values:

A Estimated Mixing Matrix (no.signals by no.factors).
W Estimated UnMixing Matrix (no.factors by no.signals).
U Estimated rotation Matrix (no.factors by no.factors).
S The column vectors of estimated independent components (no.obs by no.factors).
C Estimated Covariance Matrix (no.signals by no.signals).
whiteningMatrix

The Whitening matrix (no.factors by no.signals).
dewhiteningMatrix

The de-Whitening matrix (no.signals by no.factors).
rseed The random seed used (if any) for initializing the mixing matrix A.
elapsed The elapsed time.

Note

Since version 1.0-3 the multidimensional signal matrix is now the usual row by column matrix,
where the rows represent observations and columns the signals. Before this version, the reverse was
true in keeping with the original version of the program.

Dimensionality reduction can be achieved in the PCA stage by use of either n. comp in which case
the n.comp largest eigenvalues are chosen, else by selection of firstEig and lastEig which over-
writes the choice of n. comp.

Author(s)

Hugo Gaevert, Jarmo Hurri, Jaakko Saerelae, and Aapo Hyvaerinen for the original FastICA pack-
age for matlab.
Alexios Galanos for this R-port.

References

Hyvaerinen, A. and Oja,.E , 1997, A fast fixed-point algorithm for independent component analysis,
Neural Computation, 9(7), 1483-1492. Reprinted in Unsupervised Learning, G. Hinton and T. J.
Sejnowski, 1999, MIT Press.

Examples

Not run:

create a set of independent signals S, glued together by a mixing matrix A

(note the notation and matrix multiplication direction as we are dealing with
row rather than column vectors)

set.seed(100)

S <- matrix(runif(10000), 5000, 2)

A <- matrix(c(1, 1, -1, 2), 2, 2, byrow = TRUE)

the mixed signal X

X =S %% t(A)

36 fMoments-class

The function centers and whitens (by the eigenvalue decomposition of the

unconditional covariance matrix) the data before applying the theICA algorithm.
IC <- fastica(X, n.comp = 2, approach = "symmetric”, gfun = "tanh", trace = TRUE,
A.init = diag(2))

demeaned data:
X_bar = scale(X, scale = FALSE)

whitened data:
X_white = X_bar %*% t(IC$whiteningMatrix)

check whitening:

check correlations are zero
cor(X_white)

check diagonals are 1 in covariance
cov(X_white)

check that the estimated signals(S) multiplied by the
estimated mxing matrix (A) are the same as the original dataset (X)
round(head(IC$S %x% t(IC$A)), 12) == round(head(X), 12)

do some plots:

par(mfrow = c(1, 3))

plot(IC$S %x% t(IC$A), main = "Pre-processed data")
plot(X_white, main = "Whitened and Centered components”)
plot(IC$S, main = "ICA components”)

End(Not run)

fMoments-class Class "fMoments”

Description

Object returned from calling fmoments.

Objects from the Class

Objects can be created by calls of the form new("fMoments”, ...).

Slots

moments: Object of class "vector” A list with the (roll+1) n-ahead forecast moment matrices.

model: Object of class "vector” A list with details of data generating process.

Methods

show signature(object = "fMoments"): Summary method.

fitted signature(object = "fMoments"): Conditional mean forecast matrix.

fmoments-methods 37

rcov signature(object = "fMoments"): Conditional covariance forecast array.
rcoskew signature(object = "fMoments"): Conditional third co-moment array.
rcokurt signature(object = "fMoments"): Conditional fourth co-moment array.

Author(s)

Alexios Galanos

Examples

showClass("fMoments")

fmoments-methods Moment Based Forecast Generation

Description

Generates n-ahead forecast moment matrices given a choice of data generating processes.

Usage

fmoments(spec, Data, n.ahead = 1, roll = @, solver = "solnp”,
solver.control = list(), fit.control = list(eval.se = FALSE),
cluster = NULL, save.output = FALSE, save.dir = getwd(),

save.name = paste("M", sample(1:1000, 1), sep = ""), ...)
Arguments
Data An n-by-m data matrix or data.frame.
spec Either a DCCspec or GOGARCHspec.
n.ahead The n.ahead forecasts (n.ahead>1 is unconditional).
roll Whether to fit the data using (n - roll) periods and then return a (roll+1) n-ahead

rolling forecast moments.

solver The choice of solver to use for all models but “var”, and includes ‘solnp’,
‘nlminb’ and ‘nloptr’.

solver.control Optional control options passed to the appropriate solver chosen.

fit.control Control arguments passed to the fitting routine.

cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).

save.output Whether output should be saved to file instead of being returned to the workspace.
save.dir The directory to save output if save.output is TRUE.
save.name The name of the file to save the output list.

Additional parameters passed to the model fitting routines. In particular, for the
‘gogarch’ model additional parameters are passed to the ICA routines, whereas
for the ‘dcc’ and ‘cgarch’ models this would include the ‘realizedVol’ xts matrix
for the real GARCH model.

38 fScenario-class

Details

The function allows to generate forecast covariance matrices for use in the QP based EV model,
and also for the “gogarch” model higher co-moment matrices for use in the Utility maximization
model implemented separately.

Value

A fMoments object containing the forecast moments (list of length roll+1) and the model details
(list).

Author(s)

Alexios Galanos

fScenario-class Class "fScenario”

Description

Object returned from calling fscenario.

Objects from the Class

Objects can be created by calls of the form new("fScenario”, ...).

Slots

scenario: Object of class "vector” A list with the (roll+1) scenario matrices.

model: Object of class "vector” A list with details of data generating process.

Methods

show signature(object = "fScenario”): Summary method.

goget signature(object = "fScenario”): Get a specified ‘arg’ from the object (only ‘scenario’
used).

fitted signature(object = "fScenario”): Returns an array of the simulated scenario returns, of
dimensions n.sim by n.assets by (roll+1), with third dimension labels the actual forecast time
index, and second dimension labels the asset names. The last forecast scenario will always be
completely out of sample so the time index label for that is generated using the generatefwd
function in the rugarch package.

Author(s)

Alexios Galanos

fscenario-methods 39

fscenario-methods Scenario Generation

Description

Generates a 1-ahead forecast scenario given a choice of data generating processes (for use in
stochastic programming or risk management).

Usage
fscenario(Data, sim = 1000, roll = 0,
model = c("gogarch”, "dcc”, "cgarch”, "var", "mdist"),
spec = NULL,

var.model = list(lag = 1, lag.max = NULL,

lag.criterion = c("AIC", "HQ", "SC", "FPE"),

robust = FALSE, robust.control = list("gamma” = 0.25,
"delta” = 0.01, "nc” = 10, "ns" = 500)),

mdist.model = list(distribution = c("mvn"”, "mvt", "manig"),
AR = TRUE, lag = 1),

spd.control = list(lower = @.1, upper = 0.9, type = "pwm”,
kernel = "epanech”),

cov.method = c("ML"”, "LW", "EWMA", "MVE", "MCD", "MVT", "BS"),
cov.options = list(shrinkage=-1, lambda = 0.96),

solver = "solnp"”, solver.control = list(),

fit.control = list(eval.se = FALSE),

cluster = NULL, save.output = FALSE, save.dir = getwd(),

save.name = paste("S"”, sample(1:1000, 1), sep = ""), rseed = NULL, ...)
Arguments

Data An n-by-m data matrix or data.frame.

sim The size of the simulated 1-ahead forecast.

roll Whether to fit the data using (n - roll) periods and then return a (roll+1) 1-ahead
rolling simulated scenarios.

model A choice of 5 models for generating scenarios.

spec Required if choosing ‘gogarch’, ‘dcc’ or ‘cgarch’, in which case this represents
a specification object (see rmgarch package) .

var.model Required if model is var.

mdist.model Required if model is mdist, and provides details for the model estimation (not
yet implemented).

spd.control Required if model is “cgarch” and transformation is spd.

cov.method For model “var” this represents the choice of covariance matrix to use to gener-

ate random deviates.

cov.options For model “var” this provides the optional parameters to certain types of covari-
ance estimation methods.

40 fscenario-methods
solver The choice of solver to use for all models but “var”, and includes ‘solnp’,
‘nlminb’ and ‘nloptr’.
solver.control Optional control options passed to the appropriate solver chosen.
fit.control Control arguments passed to the fitting routine.
cluster A cluster object created by calling makeCluster from the parallel package. If it
is not NULL, then this will be used for parallel estimation of the refits (remember
to stop the cluster on completion).
save.output Whether output should be saved to file instead of being returned to the workspace.
save.dir The directory to save output if save.output is TRUE.
save.name The name of the file to save the output list.
rseed A vector of length sim to initiate the random number generator.
Additional parameters passed to the model fitting routines. In particular, for the
‘gogarch’ model additional parameters are passed to the ICA routines, whereas
for the ‘dcc’ and ‘cgarch’ models this would include the ‘realizedVol® xts matrix
for the real GARCH model.
Details

The functionality here provides some wrapper functions, to create 1-ahead (and optionally rolling,
useful for backtesting) scenarios for use in portfolio optimization using stochastic programming
methods. The nature of these data generating processes (as implemented here) and resulting opti-
mization problems results in the so called anticipative class of stochastic programming models. If
save.output is chosen, and given a save.dir, the scenario is saved (using save.name) and an object is
returned containing an empty list for the scenario but with a model details list and the seed values.
This can then be passed on to the goload function which can read from the directory and return a
complete object with the scenario.

Value

A fScenario object containing the scenario and the model details (list). The scenario list contains
a list of the (roll+1) simulated forecast scenarios, the list of (roll+1) simulated forecast residuals,
the forecast conditional mean, the forecast covariance and the list of random generator seed values
used for replication. In addition, for the gogarch model the ICA whitening (K) and rotation matrices
are also returned and required for replication of results (these may be entered in the ‘gogarchspec’
function). Use the fitted method on the object to extract the simulated returns forecast.

Author(s)

Alexios Galanos

g20GARCHfft-class 41

goGARCHfft-class Class: GO-GARCH portfolio density

Description

Class for the GO-GARCH portfolio density

Objects from the Class

The class is returned by calling the function convolution on objects of class goGARCHfit, goGARCHfilter,
goGARCHforecast, goGARCHsim and goGARCHroll

Slots

dist: A list with the portfolio density and other details.

model: A list with the model details carried across objects.

Methods

dfft signature(object = "goGARCHfft"): The takes additional argument “index” to indicate the
particular time point, and returns an interpolated density function which may be called like
any other “d” type density function.

pfft signature(object = "goGARCHfft") The takes additional argument “index” to indicate the
particular time point, and returns an interpolated distribution function which may be called

(T3]

like any other “p” type distribution function.

gfft signature(object = "goGARCHfft") This takes additional argument “index” to indicate the
particular time point, and returns an interpolated quantile function which may be called like

any other “q” type quantile function. This may also be used to generate pseudo-random vari-
ables from the distribution by using random standard uniform numbers as inputs.

nportmoments signature(object = "goGARCHfft"): Calculate and returns a matrix of the first
4 standardized moments by evaluation of the portfolio density using quadrature based method
(i.e. calling R’s “integrate” function on the portfolio FFT based density). Depending on the
GOGARCH class the density was based (e.g. g0GARCHfit vs goGARCHforecast), the format
of the output will be different, and generally follow the format ‘rules’ of that class.

notes

In the case that convolution was called on a goGARCHforecast or goGARCHroll object, the dist
slot will contain the max of n.ahead or n.roll. There should be no confusion here since the multivari-
ate forecast methods in rmgarch only allow either n.ahead>1 with n.roll = O (pure unconditional),
or n.ahead = 1 with n.roll>=0 (pure rolling), and only the latter in the case of a gogarchroll.
While the nportmoments method reconstitutes the forecasts into a more familiar form (n.ahead x
n.moments X (n.roll+1)), this does not make sense for the distribution methods (d*, p*, and q*),
and it is understood that when the user calls for example dfft(object, index=5) on an object
created from a forecast with n.ahead=10 and n.roll=0, the index is meant to indicate the uncondi-
tional density forecast at time T+5. Similarly, when calling codedfft(object, index=0) on an object

42 goGARCHf(ilter-class

created from a forecast with n.ahead=1 and n.roll = 1 (remember that n.roll is zero based), the index
is meant to indicate the first (of two, since rolls = 0:1) rolling forecast density.

Author(s)

Alexios Galanos

goGARCHfilter-class class: GO-GARCH Filter Class

Description

Class for the GO-GARCH filtered object.

Objects from the Class

The class is returned by calling the function gogarchfilter and is mainly called by gogarchfit
when the “out.sample” option is used.

Slots

mfilter: Multivariate filter object.

model: Object of class "vector” containing details of the GOGARCH model specification.

Extends

Class "mGARCHfilter", directly. Class "GARCHfilter", by class "mGARCHfilter", distance 2.
Class "rGARCH", by class "mGARCH(filter", distance 3.

Methods

as.matrix signature(x = "goGARCHfilter"):
function:
as.matrix(x, which = ""A"")
This returns four types of matrices relating to the estimation of the independent components
in the GO-GARCH model. Valid choices are “A” for the mixing matrix, “W” for the unmixing
matrix, “U” for the rotational matrix and “K” for the whitening matrix, “Kinv” for the de-
whitening matrix.

likelihood signature(object = "goGARCHfilter"): The quasilog-likelihood of the model, which
being an independent factor model is the sum of the univariate GARCH log-likelihoods plus
a term for the mixing matrix. For a dimensionality reduced system, this is NA.

coef signature(object = "goGARCHfilter"): Extraction of independent factor GARCH model
coefficients.

fitted signature(object = "goGARCHfilter"): Extracts the conditional mean equation filtered
values.

residuals signature(object = "goGARCHfilter"): Extracts the conditional mean equation resid-
uals.

g20GARCHfilter-class 43

convolution signature(object = "goGARCHfilter"):
function:
convolution(object, weights, fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1), sup-
port.method = c(''user", ""adaptive'), use.ff = TRUE, cluster = NULL, trace = 0,...)
The convolution method takes a goGARCHI(it object and a weights vector or matrix and cal-
culates the weighted density. If a vector is given, it must be the same length as the number
of assets, otherwise a matrix with row dimension equal to the row dimension of the filtered
dataset (i.e. less any lags). In the case of the multivariate normal distribution, this simply
returns the linear and quadratic transformation of the mean and covariance matrix, while in
the multivariate affine NIG distribution this is based on the numerical inversion by FFT of
the characteristic function. In that case, the “fft.step” option determines the stepsize for tun-
ing the characteristic function inversion, “fft.by” determines the resolution for the equally
spaced support given by “fft.support”, while the use of the “ff”” package is recommended to
avoid memory problems on some systems and is turned on via the “use.ff”” option. The “sup-
port.method” option allows either a fixed support range to be given (option ‘user’), else an
adaptive method is used based on the min and max of the assets at each point in time at the
0.00001 and 1-0.00001 quantiles. The range is equally spaced subject to the “fft.by” value but
the returned object no longer makes of the “ff”” package returning instead a list. Finally, the
option for parallel computation is available via the use of a cluster object as elsewhere in this
package.

nisurface signature(object = "goGARCHfilter"):
function:
nisurface(object, type = "cov'"', pair = c(1, 2), factor = ¢(1,2), plot = TRUE)
Creates the covariance or correlation (determined by “type” being either “cov” or “cor”) news
impact surface for a pair of assets and factors. Since the shocks impact the factors indepen-
dently, the news impact surface is a combination of the independent news impact curves of the
factors which when combined via the mixing matrix A, create the dynamics for the underlying
asset-factor surface function

portmoments signature(object = "goGARCHfilter"):
function:
gportmoments(object, weights)
Calculates the first 4 portfolio moments using the geometric properties of the model, given a
vector or matrix of asset weights. If a matrix is given it must have row dimension equal to
the row dimension of the filtered dataset (i.e. less any lags), else if a vector is given it will be
replicated for all time points.

rcoskew signature(object = "goGARCHfilter") function:
rcoskew(object, standardize = TRUE, from =1,to=1)
Returns the ’time-varying” NxN”2 coskewness tensor in array format. The “from” and “to”
options indicate the time indices for which to return the arrays. Because of memory issues,
this is limited to 100 indices per call.

rcokurt signature(object = "goGARCHfilter") function:
rcokurt(object, standardize = TRUE, from =1,to = 1)
Returns the ’time-varying’ NxN3 cokurtosis tensor in array format. The “from” and “to”
options indicate the time indices for which to return the arrays. Because of memory issues,
this is limited to models with less than 100 assets.

rcov signature(object = "goGARCHfilter"): Returns the time-varying NxN covariance matrix
in array format. A further argument ‘output’ allows to switch between “array” and “matrix”
returned object.

44 goGARCHf(ilter-class
rcor signature(object = "goGARCHfilter"): Returns the time-varying NxN correlation matrix
in array format. A further argument ‘output’ allows to switch between “array” and “matrix”
returned object.
betacovar signature(object = "goGARCHfilter"): function:
betacovar(object, weights, asset = 1, cluster = NULL)
Returns the covariance beta given a matrix (of length equal to the number of rows of the
original data, or vector which is then recycled to the number of rows of the original data) of
benchmark weights and the asset number.
betacoskew signature(object = "goGARCHfilter"): function:
betacoskew(object, weights, asset = 1, cluster = NULL)
Returns the coskewness beta given a matrix (of length equal to the number of rows of the
original data, or vector which is then recycled to the number of rows of the original data) of
benchmark weights and the asset number.
betacokurt signature(object = "goGARCHfilter"): function:
betacokurt(object, weights, asset = 1, cluster = NULL)
Returns the cokurtosis beta given a matrix (of length equal to the number of rows of the
original data, or vector which is then recycled to the number of rows of the original data) of
benchmark weights and the asset number.
show signature(object = "goGARCHfilter"): Summary method.
Note
The reference by Paolella (2007) contains more details on the algorithm for the characteristic func-
tion inversion via FFT. The application of this method in a related model can be found in Chen
(2007). The de Athayde and Flores (2002) paper is the basis for the geometric properties of the
higher moment tensors in finance.
Author(s)
Alexios Galanos
References

de Athayde, G.M. and Flores Jr, R.G. 2002, On Certain Geometric Aspects of Portfolio Optimisa-
tion with Higher Moments, mimeo.

Broda, S.A. and Paolella, M.S. 2009, CHICAGO: A Fast and Accurate Method for Portfolio Risk
Calculation, Journal of Financial Econometrics 7(4), 412436 .

Paolella, M.S. 2007, Intermediate Probability - A Computational Approach, Wiley-Interscience.
Schmidt, R., Hrycej, T. and Stutzle 2006, Multivariate distribution models with generalized hyper-
bolic margins, Computational Statistics \& Data Analysis 50(8), 2065-2096.

gogarchfilter-methods 45

gogarchfilter-methods function: GO-GARCH Filter

Description

Method for filtering the GO-GARCH model.

Usage
gogarchfilter(fit, data, out.sample = @, n.old = NULL, cluster = NULL, ...)
Arguments
fit A GO-GARCH fit object of class goGARCHfit.
data A multivariate data object. Can be a matrix or data.frame or timeSeries.
out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting.
n.old For comparison with goGARCHf{it models using the out.sample argument, this
is the length of the original dataset.
cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).
Value

A goGARCHfilter object containing details of the GO-GARCH filter.

Author(s)

Alexios Galanos

Examples

Not run:

data(dji3eret)

spec = gogarchspec()

fit = gogarchfit(spec = spec, data = dji3eret[,1:4], gfun = "tanh")
filter = gogarchfilter(fit, data = dji3eret[,1:4])

End(Not run)

46 g2oGARCHfit-class

goGARCHfit-class class: GO-GARCH Fit Class

Description

Class for the GO-GARCH fitted object.

Objects from the Class

The class is returned by calling the function gogarchfit.

Slots

mfit: Multivariate fit object.
model: Object of class "vector” containing details of the GO-GARCH model specification.

Extends

Class "mGARCHfit", directly. Class "GARCHfit", by class "mGARCHfit", distance 2. Class "rGARCH",
by class "mGARCHf(it", distance 3.

Methods

as.matrix signature(x = "goGARCHfit"): function:
as.matrix(x, which = ""A"")
This returns four types of matrices relating to the estimation of the independent components
in the GO-GARCH model. Valid choices are “A” for the mixing matrix, “W” for the unmixing
matrix, “U” for the rotational matrix and “K” for the whitening matrix, “Kinv” for the de-
whitening matrix.

coef signature(object = "goGARCHfit"): extraction of independent factor GARCH model co-
efficients.

convolution signature(object = "goGARCHfit"):

function:

convolution(object, weights, fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1), sup-
port.method = c(''user", ""adaptive'), use.ff = TRUE, cluster = NULL, trace = 0,...)

The convolution method takes a goGARCHI(it object and a weights vector or matrix and cal-
culates the weighted density. If a vector is given, it must be the same length as the number
of assets, otherwise a matrix with row dimension equal to the row dimension of the filtered
dataset (i.e. less any lags). In the case of the multivariate normal distribution, this simply
returns the linear and quadratic transformation of the mean and covariance matrix, while in
the multivariate affine NIG distribution this is based on the numerical inversion by FFT of
the characteristic function. In that case, the “fft.step” option determines the stepsize for tun-
ing the characteristic function inversion, “fft.by” determines the resolution for the equally
spaced support given by “fft.support”, while the use of the “ff”” package is recommended to
avoid memory problems on some systems and is turned on via the “use.ff” option. The “sup-
port.method” option allows either a fixed support range to be given (option ‘user’), else an

g20GARCHfit-class 47

adaptive method is used based on the min and max of the assets at each point in time at the
0.00001 and 1-0.00001 quantiles. The range is equally spaced subject to the “fft.by” value but
the returned object no longer makes of the “ff”” package returning instead a list. Finally, the
option for parallel computation is available via the use of a cluster object as elsewhere in this
package.

fitted signature(object = "goGARCHfit"): Extracts the conditional mean equation fitted values.

residuals signature(object = "goGARCHfit"): Extracts the conditional mean equation residu-
als.

likelihood signature(object = "goGARCHfit"): The quasi log-likelihood of the model, which
being an independent factor model is the sum of the univariate GARCH log-likelihoods plus
a term for the mixing matrix. For a dimensionality reduced system, this is NA.

nisurface signature(object = "goGARCHfit"):
function:
nisurface(object, type = "cov'"', pair = c(1, 2), factor = ¢(1,2), plot = TRUE)
Creates the covariance or correlation (determined by “type” being either “cov” or “cor”) news
impact surface for a pair of assets and factors. Since the shocks impact the factors indepen-
dently, the news impact surface is a combination of the independent news impact curves of the
factors which when combined via the mixing matrix A, create the dynamics for the underlying
asset-factor surface function.

gportmoments signature(object = "goGARCHfit"):
function:
gportmoments(object, weights)
Calculates the first 4 portfolio moments using the geometric properties of the model, given a
vector or matrix of asset weights. If a matrix is given it must have row dimension equal to
the row dimension of the filtered dataset (i.e. less any lags), else if a vector is given it will be
replicated for all time points.

rcoskew signature(object = "goGARCHfit") function:
rcoskew(object, standardize = TRUE, from =1,to=1)
Returns the ’time-varying” NxN”2 coskewness tensor in array format. The “from” and “to”
options indicate the time indices for which to return the arrays. Because of memory issues,
this is limited to 100 indices per call.

rcokurt signature(object = "goGARCHfit") function:
rcokurt(object, standardize = TRUE, from =1, to = 1)
Returns the ’time-varying’ NxN3 cokurtosis tensor in array format. The “from” and “to”
options indicate the time indices for which to return the arrays. Because of memory issues,
this is limited to models with less than 100 assets.

rcov signature(object = "goGARCHfit"): Returns the time-varying NxN covariance matrix in
array format unless ‘output’ is set to “matrix” in which case the array is flattened and the lower
and main diagonal time varying values are returned (and if a date exists, then the returned
object is of class xts).

reor signature(object = "goGARCHfit"): Returns the time-varying NxN correlation matrix in
array format unless ‘output’ is set to “matrix” in which case the array is flattened and the lower
and main diagonal time varying values are returned (and if a date exists, then the returned
object is of class xts).

betacovar signature(object = "goGARCHfit"): function:
betacovar(object, weights, asset = 1, cluster = NULL)

48

g2oGARCHfit-class

Returns the covariance beta given a matrix (of length equal to the number of rows of the
original data, or vector which is then recycled to the number of rows of the original data) of
benchmark weights and the asset number.

betacoskew signature(object = "goGARCHfit"): function:
betacoskew(object, weights, asset = 1, cluster = NULL)
Returns the coskewness beta given a matrix (of length equal to the number of rows of the
original data, or vector which is then recycled to the number of rows of the original data) of
benchmark weights and the asset number.

betacokurt signature(object = "goGARCHfit"): function:
betacokurt(object, weights, asset = 1, cluster = NULL)
Returns the cokurtosis beta given a matrix (of length equal to the number of rows of the
original data, or vector which is then recycled to the number of rows of the original data) of
benchmark weights and the asset number.

show signature(object = "goGARCHfit"): Summary method.

Note

The reference by Paolella (2007) contains more details on the algorithm for the characteristic func-
tion inversion via FFT. The application of this method in a related model can be found in Chen
(2007). The de Athayde and Flores (2002) paper is the basis for the geometric properties of the
higher moment tensors in finance.

Author(s)

Alexios Galanos

References

de Athayde, G.M. and Flores Jr, R.G. 2002, On Certain Geometric Aspects of Portfolio Optimisa-
tion with Higher Moments, mimeo.

Broda, S.A. and Paolella, M.S. 2009, CHICAGO: A Fast and Accurate Method for Portfolio Risk
Calculation, Journal of Financial Econometrics 7(4), 412—436 .

Paolella, M.S. 2007, Intermediate Probability - A Computational Approach, Wiley-Interscience.
Schmidt, R., Hrycej, T. and Stutzle 2006, Multivariate distribution models with generalized hyper-
bolic margins, Computational Statistics \& Data Analysis 50(8), 2065-2096.

Examples
Not run:
data(dji3eret)
spec = gogarchspec(mean.model = list(demean = "constant"”),
variance.model = list(model = "sGARCH", garchOrder = c(1,1), submodel = NULL),
distribution.model = list(distribution = "manig"), ica = "fastica")

fit = gogarchfit(spec = spec, data = dji3@ret[,1:4, drop = FALSE],
out.sample = 50, gfun = "tanh")

The likelihood of the model

likelihood(fit)

gogarchfit-methods 49

the GARCH coefficients of the independent factors

coef(fit)

a news-impact surface plot

#ni = nisurface(fit, type = "cov”, pair = c(1, 2), factor = c(1,2), plot = TRUE)

the time varying correlation array

mc = rcor(fit)

plot(mc[1,2,], type = "1")

The moments of an equally weighted portfolio (subtract the out.sample from dimension)
gm = gportmoments(fit, weights = matrix(1/4, ncol = 4,

nrow = dim(dji3eret)[1]-50), debug = TRUE)

End(Not run)

gogarchfit-methods function: GO-GARCH Filter

Description

Method for filtering the GO-GARCH model.

Usage

gogarchfit(spec, data, out.sample = @, solver = "solnp”,
fit.control = list(stationarity = 1), solver.control = list(), cluster = NULL,
VAR.fit = NULL, ARcoef = NULL, ...)

Arguments
spec A GO-GARCH spec object of class goGARCHspec.
data A multivariate data object. Can be a matrix or data.frame or timeSeries.
out.sample A positive integer indicating the number of periods before the last to keep for
out of sample forecasting.
solver One of either “nlminb”, “solnp” or “gosolnp”.

solver.control Control arguments list passed to optimizer.

fit.control Control arguments passed to the fitting routine. Stationarity explicitly imposes
the variance stationarity constraint during optimization.

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

VAR.fit (optional) A previously estimated VAR list returned from calling the varxfilter
function.
ARcoef An optional named matrix of the fitted AR parameters obtained from calling the

arfimafit function on each series and then extracting the coefficients (the nor-
mal distribution should be used for the AR estimation). The number of columns
should be equal to the number of series, and the rows should include the AR co-
efficients (common lag for all series), ‘sigma’, and if included the mean (‘mu’).

50 g0GARCHforecast-class

The option to pass the coefficients directly rather than letting the function esti-
mate them may be useful for example when there are convergence problems in
the arfima routine and user control of each series estimation is desirable.

Additional arguments passed to the ICA functions.

Value

A goGARCHf1it object containing details of the GO-GARCH fit.

Note

There is no check on the VAR fit list passed to the method so particular care should be exercised so
that the same data used in the fitting routine is also used in the VAR filter routine. The ability to pass
this list of the pre-calculated VAR model is particularly useful when comparing different models
(such as copula GARCH, DCC GARCH etc) using the same dataset and VAR method. Though the
classical VAR estimation is very fast and may not require this extra step, the robust method is slow
and therefore benefits from calculating this only once.

Author(s)

Alexios Galanos

Examples
Not run:
data(dji3eret)
spec = gogarchspec(mean.model = list(demean = "constant"),
variance.model = list(model = "sGARCH", garchOrder = c(1,1), submodel = NULL),
distribution.model = list(distribution = "manig"),ica = "fastica")

fit = gogarchfit(spec = spec, data = dji3Qret[,1:4, drop = FALSE],
out.sample = 50, gfun = "tanh")
fit

End(Not run)

goGARCHforecast-class class: GO-GARCH Forecast Class

Description

Class for the GO-GARCH forecast.

Objects from the Class

The class is returned by calling the function gogarchforecast.

g0GARCHforecast-class 51

Slots

mforecast: Multivariate forecast object.

model: Object of class "vector” containing details of the GOGARCH model specification.

Extends

Class "mGARCHforecast”, directly. Class "GARCHforecast”, by class "mGARCHforecast", dis-
tance 2. Class "rGARCH", by class "mGARCHforecast", distance 3.

Methods

convolution signature(object = "goGARCHforecast"):

function:

convolution(object, weights, fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1), sup-
port.method = c(''user', "adaptive''), use.ff = TRUE, cluster = NULL, trace = 0,...)

The convolution method takes a goGARCHforecast object and a weights vector or matrix and
calculates the weighted density. If a vector is given, it must be the same length as the number
of assets, otherwise a matrix with row dimension equal to the total forecast horizon. In the
case of the multivariate normal distribution, this simply returns the linear and quadratic trans-
formation of the mean and covariance matrix, while in the multivariate affine NIG distribution
this is based on the numerical inversion by FFT of the characteristic function. In that case,
the “fft.step” option determines the stepsize for tuning the characteristic function inversion,
“fft.by” determines the resolution for the equally spaced support given by “fft.support”, while
the use of the “ff”” package is recommended to avoid memory problems on some systems and
is turned on via the “use.ff” option. The “support.method” option allows either a fixed sup-
port range to be given (option ‘user’), else an adaptive method is used based on the min and
max of the assets at each point in time at the 0.00001 and 1-0.00001 quantiles. The range is
equally spaced subject to the “fft.by” value but the returned object no longer makes of the “ff”’
package returning instead a list. The option for parallel computation is available via the use of
a cluster object as elsewhere in this package. There is no special treatment of the forecast type
here (unconditional or rolling), since either n.ahead with no roll or rolling with 1-ahead only
choices are available for the gogarchforecast method. This means that the stored object
does not distringuish between an unconditional or rolling forecast, calculating the density for
all points (see note).

gportmoments signature(object = "goGARCHforecast"):

function:

gportmoments(object, weights)

Calculates the first 4 standardized portfolio moments using the geometric properties of the
model, given a matrix of asset weights with row dimension equal to the forecast n.ahead or
n.roll horizon. Returns an array of dimensions n.ahead x 4 (moments) x n.roll, with the third
array dimension labelled with the T+0 index times. If the number of assets > 100, then the
kurtosis is not returned (see cokurtosis restrictions below).

rcoskew signature(object = "goGARCHforecast"):

function:

rcoskew(object, standardize = TRUE, from = 1, to = 1, roll = 0)

Returns the "time-varying’ NxN”2 (coskewness tensor) x (to:fromlroll) in array format. The
“from” and “to” options indicate the time indices for which to return the array and “roll” the

52

g0GARCHforecast-class

rolling index (base=0). The third dimension array label denotes the T+i (i=from:to) forecast
horizon given the T+0 roll index which is returned as an attribute (attr(,“T+0")) of the array.
The “standardize” option indicates whether the coskewness should be standardized by the
conditional sigma (see equations in vignette). It is also possible to set roll to the character ‘all’
in which case all the rolling 1-ahead forecasts are returned in an n by n*2 by (n.roll+1) array
with 3rd dimension label the T+0 dates (instead of being an attribute).

rcokurt signature(object = "goGARCHforecast"):

rcov

rcor

coef

function:

rcokurt(object, standardize = TRUE, from = 1, to = 1, roll = 0)

Returns the ’time-varying” NxN3 (cokurtosis tensor) x (to:fromlroll) in array format. The
“from” and “to” options indicate the time indices for which to return the array and “roll” the
rolling index (base=0). Because of memory issues, this is only returned when the number of
assets are less than 100. The third dimension array label denotes the T+i (i=from:to) forecast
horizon given the T+0 roll index which is returned as an attribute (attr(,“T+0")) of the array.
The “standardize” option indicates whether the cokurtosis should be standardized by the con-
ditional sigma (see equations in vignette). It is also possible to set roll to the character ‘all’
in which case all the rolling 1-ahead forecasts are returned in an n by n*3 by (n.roll+1) array
with 3rd dimension label the T+0 dates (instead of being an attribute.

signature(object = "goGARCHforecast"): Returns the conditional covariances, in a list of

length (n.roll+1), with names the T+0 index, and each list slot having an array of dimensions
n.asset X n.asset x n.ahead, with the third array dimension labelled as T+i (i>0). A further
argument ‘output’ allows to switch between “array” and “matrix” returned object.

signature(object = "goGARCHforecast"”): Returns the conditional correlations, in a list of
length (n.roll+1), with names the T+0 index, and each list slot having an array of dimensions
n.asset X n.asset X n.ahead, with the third array dimension labelled as T+i (i>0). A further
argument ‘output’ allows to switch between “array” and “matrix” returned object.

signature(object = "goGARCHforecast"): Extraction of independent factor GARCH model
coefficients saved from the goGARCH{it object.

fitted signature(object = "goGARCHforecast"): Extracts the conditional mean forecast values.

Returns an n.ahead x n.assets x (n.roll+1) array where the third dimension array labels are the
T+0 index times.

sigma signature(object = "goGARCHforecast"): Extracts the conditional sigma forecast val-

ues. Returns an n.ahead x n.assets x (n.roll+1) array where the third dimension array labels
are the T+0 index times. Takes optional argument “factors” (default TRUE) denoting whether
to return the factor conditional sigma or the transformed sigma for the assets.

as.matrix signature(x = "goGARCHforecast"):

function:

as.matrix(x, which = ""A"")

This returns four types of matrices relating to the estimation of the independent components
in the GO-GARCH model. Valid choices are “A” for the mixing matrix, “W” for the unmixing
matrix, “U” for the rotational matrix and “K” for the whitening matrix, “Kinv” for the de-
whitening matrix.

betacovar signature(object = "goGARCHforecast"): function:

betacovar(object, weights, asset = 1)

Returns the covariance beta given a matrix (of length equal to the number of rows of the fore-
cast horizon, or vector which is then recycled to the number of rows of the forecast horizon)
of benchmark weights and the asset number.

gogarchforecast-methods 53

betacoskew signature(object = "goGARCHforecast"”): function:
betacoskew(object, weights, asset = 1)
Returns the coskewness beta given a matrix (of length equal to the number of rows of the fore-
cast horizon, or vector which is then recycled to the number of rows of the forecast horizon)
of benchmark weights and the asset number.

betacokurt signature(object = "goGARCHforecast"”): function:
betacokurt(object, weights, asset = 1)
Returns the cokurtosis beta given a matrix (of length equal to the number of rows of the fore-
cast horizon, or vector which is then recycled to the number of rows of the forecast horizon)
of benchmark weights and the asset number.

show signature(object = "goGARCHforecast"): Summary method.

Note

The reference by Chen et al (2010) and Paolella (2007) contains more details on the algorithm for
the characteristic function inversion via FFT. The de Athayde and Flores (2002) paper is the basis
for some of the geometric properties of the higher moment tensors. The paper by Ghalanos et al
(2013) contains more specific details.

Forecasts are carried out on the time varying parameters of the factor distributions, and then scaled
and transformed to those of the assets after adding back the mean forecast (which is either a constant
or the AR/VAR mean forecast).

Author(s)

Alexios Galanos

References

Chen, Y., Hardle, W., and Spokoiny, V. 2010, GHICA-Risk analysis with GH distributions and in-
dependent components, Journal of Empirical Finance, 17(2), 255-269.

de Athayde, G.M. and Flores Jr, R.G. 2002, On Certain Geometric Aspects of Portfolio Optimisa-
tion with Higher Moments, mimeo.

Ghalanos, A., Rossi, E., and Urga, G. (2013). Independent Factor Autoregressive Conditional Den-
sity Model, forthcoming.

Paolella, M.S. 2007, Intermediate Probability - A Computational Approach, Wiley-Interscience.

gogarchforecast-methods
function: GO-GARCH Forecast

Description

Method for forecasting from the GO-GARCH model.

54 go0GARCHTroll-class

Usage

gogarchforecast(fit, n.ahead = 10, n.roll = 0,
external.forecasts = list(mregfor = NULL), cluster = NULL, ...)

Arguments
fit A GO-GARCH fit object of class goGARCHfit.
n.ahead The forecast horizon.
n.roll The no. of rolling forecasts to create beyond the first one.

external.forecasts

A list with a matrix object of the external lagged forecasts (if used). These must
contain (n.roll+1) x n.ahead forecasts.

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

Value

A goGARCHforecast object containing details of the GO-GARCH forecast.

Author(s)

Alexios Galanos

Examples

Not run:

data(dji3eret)

spec = gogarchspec()

fit = gogarchfit(spec = spec, data = dji3oret[,1:4], out.sample = 10,
gfun = "tanh")

forecast = gogarchforecast(fit, n.ahead = 1, n.roll = 9)

End(Not run)

goGARCHroll-class class: GO-GARCH Roll Class

Description

Class for the GO-GARCH Roll.

Objects from the Class

The class is returned by calling the function gogarchroll.

g0GARCHTroll-class 55

Slots

forecast: Object of class "vector” which contains the rolling forecasts of the distributional pa-
rameters for each factor.

model: Object of class "vector” containing details of the GOGARCH model specification.

Extends

Class "mGARCHroll", directly. Class "GARCHroll", by class "mGARCHTroll", distance 2. Class
"rGARCH", by class "mGARCHroll", distance 3.

Methods

coef signature(object = "goGARCHroll"): Extraction of independent factor GARCH model co-
efficients saved from the goGARCHT(it objects(returns a list).

fitted signature(object = "goGARCHroll"): Extracts the conditional fitted forecast values (re-
turns an xts object with index the actual forecast T+1 times).

sigma signature(object = "goGARCHroll"): Extracts the conditional sigma forecast values (re-
turns an xts object with index the actual forecast T+1 times). Takes optional argument ““fac-
tors” (default TRUE) denoting whether to return the factor conditional sigma or the trans-
formed sigma for the assets.

rcov signature(object = "goGARCHroll"): Returns the time-varying n.asset X n.asset x (n.roll+1)
covariance matrix in array format, where the third dimension labels are now the actual rolling
n.ahead=1 forecast time indices (T+1). A further argument ‘output’ allows to switch between
“array” and “matrix” returned object.

rcor signature(object = "goGARCHroll"): Returns the time-varying n.asset x n.asset X (n.roll+1)
correlation matrix in array format, where the third dimension labels are now the actual rolling
n.ahead=1 forecast time indices (T+1). A further argument ‘output’ allows to switch between
“array” and “matrix” returned object.

rcoskew signature(object = "goGARCHroll"): Returns the time-varying n.asset X n.asset’2 x
(n.roll+1) coskewness matrix in array format, where the third dimension labels are now the
actual rolling n.ahead=1 forecast time indices (T+1). There is a “standardize” option which
indicates whether the coskewness should be standardized by the conditional sigma (see equa-
tions in vignette).

rcokurt signature(object = "goGARCHroll"): Returns the time-varying n.asset x n.asset"3 x
(n.roll+1) cokurtosis matrix in array format, where the third dimension labels are now the
actual rolling n.ahead=1 forecast time indices (T+1). There is a “standardize” option which
indicates whether the cokurtosis should be standardized by the conditional sigma (see equa-
tions in vignette).

gportmoments signature(object = "goGARCHroll"):
function:
gportmoments(object, weights)
Calculates the first 4 standardized portfolio moments using the geometric properties of the
model, given a matrix of asset weights with row dimension equal to the total rolling forecast
horizon. Returns an xts object of dimensions (total rolling forecast) x 4 (moments), with the
index denoting the T+1 actual forecast time. If the number of assets > 100, then the kurtosis
is not returned (see cokurtosis restrictions below).

56 gogarchroll-methods

convolution signature(object = "goGARCHroll"):
function:
convolution(object, weights, fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1), sup-
port.method = c(''user", ""adaptive'), use.ff = TRUE, cluster = NULL, trace = 0,...)
The convolution method takes a goGARCHTroll object and a weights vector or matrix and cal-
culates the weighted density. If a vector is given, it must be the same length as the number
of assets, otherwise a matrix with row dimension equal to the row dimension of total forecast
horizon. In the case of the multivariate normal distribution, this simply returns the linear and
quadratic transformation of the mean and covariance matrix, while in the multivariate affine
NIG distribution this is based on the numerical inversion by FFT of the characteristic func-
tion. In that case, the “fft.step” option determines the stepsize for tuning the characteristic
function inversion, “fft.by” determines the resolution for the equally spaced support given by
“fft.support”, while the use of the “ff”” package is recommended to avoid memory problems
on some systems and is turned on via the “use.ff” option. The “support.method” option al-
lows either a fixed support range to be given (option ‘user’), else an adaptive method is used
based on the min and max of the assets at each point in time at the 0.00001 and 1-0.00001
quantiles. The range is equally spaced subject to the “fft.by” value but the returned object no
longer makes of the “ff” package returning instead a list. The option for parallel computation
is available via the use of a cluster object as elsewhere in this package. Passing this object to
the distribution methods (e.g. qfft) follows the same rules as the goGARCHforecast object,
namely that the index is zero based.

show signature(object = "goGARCHroll"): Summary.

Author(s)

Alexios Galanos

gogarchroll-methods function: GO-GARCH Rolling Estimation

Description

Method for performing rolling estimation of the GO-GARCH model.

Usage
gogarchroll(spec, data, n.ahead = 1, forecast.length = 50, n.start = NULL,
refit.every = 25, refit.window = c("recursive”, "moving"”), window.size = NULL,
solver = "solnp"”, solver.control = list(), fit.control = list(), rseed = NULL,
cluster = NULL, save.fit = FALSE, save.wdir = NULL, ...)

Arguments
spec A GO-GARCH spec object of class goGARCHspec.
data A multivariate data object. Can be a matrix or data.frame or timeSeries.

n.ahead The forecast horizon (only 1-ahead supported for rolling forecasts).

g0GARCHsim-class

forecast.length

n.start

refit.every

refit.window

window.size

solver
fit.control
solver.control

rseed

cluster

save.fit

save.wdir

Value

57

The length of the total forecast for which out of sample data from the dataset
will be excluded for testing.

Instead of forecast.length, this determines the starting point in the dataset from
which to initialize the rolling forecast.

Determines every how many periods the model is re-estimated.

Whether the refit is done on an expanding window including all the previous
data or a moving window where all previous data is used for the first estimation
and then moved by a length equal to refit.every (unless the window.size option
is used instead).

If not NULL, determines the size of the moving window in the rolling estima-
tion, which also determines the first point used.

The solver to use.
Control parameters parameters passed to the fitting function.
Control parameters passed to the solver.

Initialization seed for first ICA fit. The rest of the ICA fits are initialized with
the previous mixing matrix (using A.init).

A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

Whether to save the fitted objects of class goGARCHf1it during the estimation of
each (“refit.every”). If true, the directory to save must be provided (see below).
The function will not save this by default for reasons of memory management,
but can save it as an “.rda” file in the user’s chosen directory for further analysis.

If “save.fit” is true, the directory in which to save the goGARCHf it objects (1 for
each “refit.every”).

An object of class goGARCHroll.

Author(s)

Alexios Galanos

goGARCHsim-class

class: GO-GARCH Simultion Class

Description

Class for the GO-GARCH Simulation.

58

goGARCHsim-class

Objects from the Class

The class is returned by calling the function gogarchsim.

Slots

msim: Object of class "vector” The multivariate simulation list.

model: Object of class "vector” containing details of the GOGARCH model specification.

Extends

Class "mGARCHsim", directly. Class "GARCHsim", by class "mGARCHsim", distance 2. Class
"rGARCH", by class "mGARCHsim", distance 3.

Methods

convolution signature(object = "goGARCHsim"):

function:

convolution(object, weights, fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1), sup-
port.method = c(''user", '"adaptive"), use.ff = TRUE, sim = 1, cluster = NULL, trace =
0,...)

The convolution method takes a goGARCHsim object and a weights vector and calculates the
weighted density. The vector must be the same length as the number of assets. The “sim”
option indicates the simulation index to use, given the “m.sim” option chosen in the call to the
simulation function. In the case of the multivariate normal distribution, this simply returns the
linear and quadratic transformation of the mean and covariance matrix, while in the multivari-
ate affine NIG distribution this is based on the numerical inversion by FFT of the characteristic
function. In that case, the “fft.step” option determines the stepsize for tuning the characteristic
function inversion, “fft.by” determines the resolution for the equally spaced support given by
“fft.support”, while the use of the “ff” package is recommended to avoid memory problems
on some systems and is turned on via the “use.ff”” option. The “support.method” option al-
lows either a fixed support range to be given (option ‘user’), else an adaptive method is used
based on the min and max of the assets at each point in time at the 0.00001 and 1-0.00001
quantiles. The range is equally spaced subject to the “fft.by” value but the returned object no
longer makes use of the “ff”” package returning instead a list. Finally, the option for parallel
computation is available via the use of a cluster object as elsewhere in this package.

gportmoments signature(object = "goGARCHsim"):

function:

gportmoments(object, weights, sim = 1)

Calculates the first 3 portfolio moments using the geometric properties of the model, given a
matrix of asset weights with row dimension equal to the row dimension of the filtered dataset
(i.e. less any lags). The “sim” option indicates the simulation index to use, given the “m.sim”
option chosen in the call to the simulation function.

rcoskew signature(object = "goGARCHsim"):

function:

rcoskew(object, from =1, to = 1, sim = 1)

Returns the ’time-varying’” NxN”2 coskewness tensor in array format. The “from” and “to”
options indicate the time indices for which to return the arrays. Because of memory issues,

gogarchsim-methods 59

this is limited to 100 indices. The “sim” option indicates the simulation index to use, given
the “m.sim” option chosen in the call to the simulation function.

rcokurt signature(object = "goGARCHsim"):
function:
rcokurt(object, standardize = TRUE, from =1, to = 1)
Returns the "time-varying” NxN”3 cokurtosis tensor in array format. The “from” and “to”
options indicate the time indices for which to return the arrays. Because of memory issues,
this is limited to models with less than 20 assets.

rcov signature(object = "goGARCHsim"): Returns the time-varying NxN covariance matrix in
array format. There is an additional “sim” option which indicates the simulation index to use,
given the “m.sim” option chosen in the call to the simulation function. A further argument
‘output’ allows to switch between “array” and “matrix” returned object.

rcor signature(object = "goGARCHsim"): Returns the time-varying NxN correlation matrix in
array format. There is an additional “sim” option which indicates the simulation index to use,
given the “m.sim” option chosen in the call to the simulation function. A further argument
‘output’ allows to switch between “array” and “matrix” returned object.

as.matrix signature(x = "goGARCHsim"):
function:
as.matrix(x, which = ""A"")
This returns four types of matrices relating to the estimation of the independent components
in the GO-GARCH model. Valid choices are “A” for the mixing matrix, “W” for the unmixing
matrix, “U” for the rotational matrix and “K” for the whitening matrix, “Kinv” for the de-
whitening matrix.

Author(s)

Alexios Galanos

gogarchsim-methods function: GO-GARCH Simulation

Description

Method for simulation from a fitted GO-GARCH model.

Usage
gogarchsim(object, n.sim = 1, n.start = @, m.sim = 1,
startMethod = c("unconditional”, "sample"”), prereturns = NA, preresiduals = NA,
presigma = NA, mexsimdata = NULL, rseed = NULL, cluster = NULL, ...)
Arguments
object A GO-GARCH fit object of class goGARCHfit or goGARCHfilter.

n.sim The simulation horizon.

60

n.start
m.sim

startMethod

prereturns
preresiduals
presigma

mexsimdata

rseed

cluster

Value

goGARCHspec-class

The burn-in sample.
The number of simulations.

Starting values for the simulation. Valid methods are “unconditional” for the
expected values given the density, and “sample” for the ending values of the
actual data from the fit object.

Allows the starting return data to be provided by the user.
Allows the starting factor residuals to be provided by the user.
Allows the starting conditional factor sigma to be provided by the user.

A list of matrices with the simulated lagged external variables (if any). The list
should be of size m.sim and the matrices each have n.sim + n.start rows.

Optional seeding value(s) for the random number generator.

A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation (remember to stop
the cluster on completion).

A goGARCHsim object containing details of the GO-GARCH simulation.

Author(s)

Alexios Galanos

goGARCHspec-class

class: GO-GARCH Specification Class

Description

Class for the GO-GARCH specification.

Objects from the Class

The class is returned by calling the function goGARCHspec.

Slots

model: Multivariate model specification.

umodel: Univariate model specification.

Extends

Class "mGARCHspec”, directly. Class "GARCHspec", by class "mGARCHspec", distance 2. Class

"rGARCH", by class

"mGARCHSspec", distance 3.

gogarchspec-methods 61

Methods

show signature(object = "goGARCHspec"): Summary method.

Note

The mixing matrix in the GO-GARCH model implemented in the rmgarch package is based on
non-parametric independent component analysis (ICA) methodology. The estimation is a 2-stage
methodology described in Broda and Paolella (2009) and Zhang and Chan (2009). The extension
to the use of the full multivariate affine GH distribution is detailed in Ghalanos et al (2011).

Author(s)

Alexios Galanos

References

van der Weide, R. 2002, GO-GARCH: a multivariate generalized orthogonal GARCH model, Jour-
nal of Applied Econometrics, 549-564.

Zhang, K. and Chan, L. 2009, Efficient factor GARCH models and factor-DCC models, Quantita-
tive Finance, 71-91.

Broda, S.A. and Paolella, M.S. 2009, CHICAGO: A Fast and Accurate Method for Portfolio Risk
Calculation, Journal of Financial Econometrics, 412-436.

Ghalanos, A. and Rossi, E. and Urga, G. 2011, Independent Factor Autoregressive Conditional
Density Model, Pending—submitted.

gogarchspec-methods function: GO-GARCH Specification

Description

Method for creating a GO-GARCH specification object prior to fitting.

Usage

gogarchspec(mean.model = list(model = c("constant”, "AR", "VAR"), robust = FALSE,
lag = 1, lag.max = NULL, lag.criterion = c("AIC", "HQ", "SC", "FPE"),
external.regressors = NULL,

robust.control = list("gamma” = 0.25, "delta” = 0.01, "nc” = 10, "ns" = 500)),
variance.model = list(model = "sGARCH"”, garchOrder = c(1,1), submodel = NULL,
variance.targeting = FALSE), distribution.model = c("mvnorm”, "manig"”, "magh"),

ica = c("fastica”, "radical"),
ica.fix = list(A = NULL, K = NULL), ...)

62

Arguments

mean.model

variance.model

goload-methods

The mean specification. Allows for either a constant filtration of the return se-
ries, a univariate AR for each series with common lag (via the “lag” argument)
else a classical or robust Vector Autoregressive Model (VAR). The ‘robust’ op-
tion allows for a robust version of VAR based on the multivariate Least Trimmed
Squares Estimator described in Croux and Joossens (2008). The ‘robust.control’
includes additional tuning parameters to the robust regression including the pro-
portion to trim (““gamma”), the critical value for Reweighted estimator (“delta”),
the number of subsets (“ns”) and the number of C-steps (“nc”). The exter-
nal.regressors argument allows for a matrix of common external regressors in
the constant, AR or VAR formulations.

The univariate variance specification for the independent factors of the GO-
GARCH model.

distribution.model

ica

ica.fix

Value

The distributions supported are the multivariate normal (“mvnorm”) and the
multivariate affine NIG (“manig”’) and GHYP (“magh”) distributions of Schmidt
et al (see references).

The algorithm to use for extracting the independent components. The fastica
and radical algorithms are the only ICA algorithms currently allowed and lo-
cally implemented. See their documentation for a list of additional arguments
possible, which may be passed in the gogarchfit method.

This allows the option of supplying the mixing matrix (A) and optionally the
whitening Matrix (K). This is likely to be use when comparing different models
(with the same mean filtration and dataset but different variance models) and
you wish to use the same independent factors.

A goGARCHspec object containing details of the GO-GARCH specification.

Author(s)

Alexios Galanos

goload-methods

Load Scenario from File

Description

Loads a previously saved fScenario from file and returns a fScenario or fMoments object.

Usage

goload(object,

)

last-methods 63

Arguments
object A fScenario or fMoments object which was created with save.output set to
TRUE.
not used.
Details

There are times when it is more efficient to save large scenarios to file (particularly when creating
them in parallel), rather than returning them to the user workspace. The save.output option in the
fscenario and fmoments allows to do just that, returning instead a lighter object with an empty
scenario slot, but with the model slot included, containing the details of the location and name of
the saved scenario (or moments list). The goload function then takes this object, reads the location
and name and loads the scenario (or moments) into its slot in the object and returns this to the user’s
workspace.

Value

A fScenario or fMoments object with the scenario or moments slot now filled with the saved data
from file.

Author(s)

Alexios Galanos

last-methods First and Last methods for accessing objects

Description

Functions for accessing first-n and last-n values of an object (similar to head and tail).

Usage
last(x, index =1, ...)
first(x, index =1, ...)
Arguments
X Currently only arrays supported.
index First or Last n-indices to return values for.
For expansion to other classes.
Methods

signature(x = "ANY")

signature(x = "array")

64 mGARCHT(it-class

Author(s)

Alexios Galanos

mGARCHfilter-class Class: Multivariate GARCH Filter Class

Description

High Level multivariate GARCH filter class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends
Class "GARCHfilter", directly. Class "rGARCH", by class "GARCHTfilter", distance 2.

Methods

No methods defined with class "mGARCH(filter" in the signature.

Author(s)

Alexios Galanos

mGARCHfit-class Class: Multivariate GARCH Fit Class

Description

High Level multivariate GARCH fit class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends
Class "GARCHfit", directly. Class "rGARCH", by class "GARCHf(it", distance 2.

Methods
No methods defined with class "mGARCHf{it" in the signature.

Author(s)

Alexios Galanos

mGARCHforecast-class 65

mGARCHforecast-class Class: Multivariate GARCH Forecast Class

Description

High Level multivariate GARCH forecast class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "GARCHforecast”, directly. Class "rGARCH", by class "GARCHforecast", distance 2.

Methods

No methods defined with class "mGARCHforecast" in the signature.

Author(s)

Alexios Galanos

mGARCHroll-class Class: Multivariate GARCH Roll Class

Description

High Level multivariate GARCH roll class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends
Class "GARCHroll", directly. Class "rGARCH", by class "GARCHTroll", distance 2.

Methods

No methods defined with class "mGARCHTroll" in the signature.

Author(s)

Alexios Galanos

66 mGARCHspec-class

MGARCHsim-class Class: Multivariate GARCH Simulation Class

Description

High Level multivariate GARCH simulation class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends
Class "GARCHsim", directly. Class "rGARCH", by class "GARCHsim", distance 2.

Methods

No methods defined with class "mGARCHsim" in the signature.

Author(s)

Alexios Galanos

mGARCHspec-class Class: Multivariate GARCH Specification

Description

High Level multivariate GARCH specification class.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends
Class "GARCHspec”, directly. Class "rGARCH", by class "GARCHspec", distance 2.

Methods

No methods defined with class "mGARCHspec" in the signature.

Author(s)

Alexios Galanos

radical

67

radical

The Robust Accurate, Direct ICA aLgorithm (RADICAL).

Description

An ICA algorithm based on an efficient entropy estimator (due to Vasicek) which is robust to out-

liers.

Usage

radical (X, n.comp = dim(X)[2], demean = TRUE, pca.cov = c("ML", "LW", "ROB", "EWMA"),
k = 150, augment = FALSE, replications = 30, sd = 0.175, firstEig =1,
lastEig = dim(X)[1], pcaE = NULL, pcaD = NULL, whiteSig = NULL, whiteMat = NULL,

dewhiteMat = NULL, rseed = NULL, trace = FALSE, ...)
Arguments

X The multidimensional signal matrix, where each column of matrix represents
one observed signal.

n.comp Number of independent components to estimate, defaults to the dimension of
the data (rows). Is overwritten by firstEig and lastEig.

demean (Logical) Whether the data should be centered.

pca.cov The method to use for the calculation of the covariance matrix during the PCA
whitening phase. “ML” is the standard maximum likelihood method, “LW” is
the Ledoit-Wolf method, “ROB” is the robust method from the MASS package
and “EWMA” an exponentially weighted moving average estimator. Optional
parameters passed via the ... argument.

k The number of angles at which to evaluate the contrast function. The ICA con-
trast function will be evaluated at K evenly spaced rotations from -Pi/4 to Pi/4

augment Whether to augment the data (as explained in paper). For large datasets of
>10,000 points this should be set to FALSE.

replications This is the number of replicated points for each original point. The default value
is 30. The larger the number of points in the data set, the smaller this value
can be. For data sets of 10,000 points or more, point replication should be de-
activated by setting augment to FALSE.

sd This is the standard deviation (noise) of the replicated points when using the
augmentation option.

firstEig This and lastEig specify the range for eigenvalues that are retained, firstEig
is the index of largest eigenvalue to be retained. Making use of this option
overwrites n.comp.

lastEig This is the index of the last (smallest) eigenvalue to be retained and overwrites
n.comp argument.

pcaE Optionally provided eigenvector (must also supply pcaD).

pcaD Optionally provided eigenvalues (must also supply pcak).

68 radical
whiteSig Optionally provided Whitened signal.
whiteMat Optionally provided Whitening matrix (no.factors by no.signals).
dewhiteMat Optionally provided dewhitening matrix (no.signals by no.factors).
rseed Optionally provided seed to initialize the augmented data matrix.
trace To report progress in the console, set this to TRUE.
Optional arguments passed to the pca.cov methods.
Details
The interested reader should consult the paper in the references section for details on the properties
of the algorithm.
The algorithm is quite slow, despite partial implementation in C++, and should only be used on
small to medium sized sets.
Value
A list containing the following values:
A Estimated Mixing Matrix (no.signals by no.factors).
W Estimated UnMixing Matrix (no.factors by no.signals).
U Estimated rotation Matrix (no.factors by no.factors).
S The column vectors of estimated independent components (no.obs by no.factors).
C Estimated Covariance Matrix (no.signals by no.signals).
whiteningMatrix
The Whitening matrix (no.factors by no.signals).
dewhiteningMatrix
The de-Whitening matrix (no.signals by no.factors).
rseed The random seed used (if any) for initializing the mixing matrix A.
elapsed The elapsed time.
Author(s)
Erik G. Learned-Miller for the Radical algorithm and Matlab package.
Alexios Galanos for this R-port.
References

Learned-Miller, A.G and Fisher III, J.W., 2003, ICA Using Spacings Estimates of Entropy, Journal
of Machine Learning Research, 4, 1271-1295. http://www.cs.umass.edu/~elm/ICA/

http://www.cs.umass.edu/~elm/ICA/

varxfit 69

Examples

Not run:

create a set of independent signals S, glued together by a mixing matrix A

(note the notation and matrix multiplication direction as we are dealing with
row rather than column vectors)

set.seed(100)

<- matrix(runif(10000), 5000, 2)

<- matrix(c(1, 1, -1, 2), 2, 2, byrow = TRUE)

the mixed signal X

=S %% t(A)

The function centers and whitens (by the eigenvalue decomposition of the
unconditional covariance matrix) the data before applying the theICA algorithm.
IC <- radical(X, n.comp = 2)

H H X HF > 0

demeaned data:
X_bar = scale(X, scale = FALSE)

whitened data:
X_white = X_bar %*% t(IC$whiteningMatrix)

check whitening:

check correlations are zero
cor(X_white)

check diagonals are 1 in covariance
cov(X_white)

check that the estimated signals(S) multiplied by the
estimated mxing matrix (A) are the same as the original dataset (X)
round(head(IC$S %x% t(IC$A)), 12) == round(head(X), 12)

do some plots:

par(mfrow = c(1, 3))

plot(IC$S %x% t(IC$A), main = "Pre-processed data")
plot(X_white, main = "Whitened and Centered components”)
plot(IC$S, main = "ICA components”)

End(Not run)

varxfit VARX Fit/Filter/Forecast/Simulation Functions

Description
Vector Autoregressive (VAR) with Constant and Optional Exogenous Regressors (X) Fit, Filter,
Forecast and Simulation functions for use with multivariate GARCH models.

Usage

varxfit(X, p, constant = TRUE, exogen = NULL, robust = FALSE, gamma = 0.25,
delta = .01, nc = 10, ns = 500, postpad = c("none”, "constant”, "zero", "NA"),

70 varxfit

cluster = NULL)

varxfilter(X, p, Bcoef, exogen = NULL, postpad = c("none”, "constant”, "zero"”, "NA"))
varxforecast(X, Bcoef, p, out.sample, n.ahead, n.roll, mregfor)

varxsim (X, Bcoef, p, n.sim, n.start, prereturns, resids, mexsimdata)

Arguments

X A multivariate data matrix.

p The number of autoregressive lags.

constant Whether to include a constant.

exogen An optional matrix of exogenous regressors with as many rows as X, and appro-
priately lagged.

Bcoef A matrix of coefficients for the varxfilter function.

robust Whether to use the robust version of VAR based on the multivariate Least Trimmed
Squares Estimator described in Croux and Joossens (2008).

gamma Proportion to trim in the robust method.

delta The critical value for Reweighted estimator for the robust method.

ns The number of subsets to use for the robust method.

nc The number of C-steps to use for the robust method.

postpad (defaults to ‘none’) Whether to postpad the fitted/filtered values (and hence cal-
culation of residuals) with the estimated constant, zeros or NA’s, thus returning
matrices of the same size as the input data (rather than input data size less the
number of lags).

cluster A cluster object created by calling makeCluster from the parallel package. If
it is not NULL, then this will be used for parallel estimation in the case of the
robust VAR version (remember to stop the cluster on completion).

out.sample The number of points kept for out of sample rolling forecast.

n.ahead The forecast horizon.

n.roll In combination with out.sample, determines the number of times to roll for-
ward the n.ahead forecast using data left out of sample.

mregfor Matrix of external regressor forecasts (with appropriate lag structure).

n.sim Simulation horizon.

n.start Simulation burn-in sample.

prereturns Optionally supplied pre-return matrix with “p” lags to initialize simulation.

resids Matrix of randomly generated residuals of size n.sim+n.start.

mexsimdata Matrix of external regressor pre-generated random values to use in the simula-
tion (if NULL then assumed zero).

Details

This are convenience functions to be optionally used when using the multivariate GARCH methods.

varxfit

Value

71

A list with the following items:

Bcoef

xfitted

xresiduals

Bcov

se

tstat

pstat

lag

mxn

meansim

[varxfit, varxfilter]

The coefficient matrix with rows equal to number of assets, and columns equal
to number of assets x number of lags plus 1 (constant) plus number of exogenous
regressors.

[varxfit, varxfilter]
The fitted/filtered series (conditional mean series).

[varxfit, varxfilter]
The residuals.

[varxfit]
The covariance matrix of the coefficients.

[varxfit]
The standard error of the coefficients.

[varxfit]
The t-stat of the s.e.

[varxfit]
The p-values of the s.e.

[varxfit, varxfilter]
The number of autoregressive lags.

[varxfit]
The number of exogenous regressors .

[varxsim]
The simulated conditional mean.

The varxsim returns an n.sim x n.asset matrix of the simulated conditional means, while the varx-
forecast returns an n.ahead x n.assets x (n.roll+1) array of the forecast conditional means.

Note

Part of the varxfit functionality and structure is inspired from the ’vars’ package, but the estimation
method is implemented in a very quick way without calling ’Im’. The robust method is based
on the matlab program of Christophe Croux available from his website and the option of using
parallel computation is implemented for this particular choice.The postpad option is used when the
returned data needs to be of the same size as the inputed data for easier manipulation/comparison
(since padding is done post-estimation, there is no bias introduced during estimation).

Author(s)

Alexios Galanos

72 wmargin

References

Lutkepohl, H. 2005, New introduction to multiple time series analysis, Springer.
Croux, C. and Joossens, K. 2008, Robust estimation of the vector autoregressive model by a least
trimmed squares procedure, COMPSTAT, 489-501.

wmargin Weighted Distribution Margin

Description

Return the weighted margin of one of 3 elliptical distributions given a matrix of weights.

Usage

wmargin(distribution = "mvnorm”, weights, mean, Sigma, shape = NA, skew = NA)

Arguments

distribution One of ‘mvnorm’, ‘mvlaplace’ or ‘mvt’.

weights Either a vector or matrix of weights, in the latter case must be of the same row
dimension as the covariance array.

mean Wither a vector or matrix of conditional distribution means, in the latter case
must be of the same row dimension as the covariance array.

Sigma An array of covariances, usually returned by calling the ‘rcov’ method on one
of the multivariate GARCH fitted objects.
shape The shape (d.o.f.) parameter of the multivariate student distribution.
skew Not currently required for the 3 distributions used.
Details

This is just a convenience function to return the weighted variance and mean of the three elliptical
distributions given a set of weights.
Value

A matrix with each row representing the conditional weighted marginal density with corresponding
parameters.

Author(s)

Alexios Galanos

Index

x classes

cGARCHfilter-class, 4
cGARCHfit-class, 7
cGARCHsim-class, 10
cGARCHspec-class, 13
DCCfilter-class, 16
DCCfit-class, 18
DCCforecast-class, 21
DCCroll-class, 24
DCCsim-class, 26
DCCspec-class, 29
fMoments-class, 36
fScenario-class, 38
goGARCHfft-class, 41
goGARCHfilter-class, 42
goGARCHfit-class, 46

goGARCHforecast-class, 50

goGARCHroll-class, 54
goGARCHsim-class, 57
goGARCHspec-class, 60
mGARCHfilter-class, 64
mGARCHfit-class, 64
mGARCHforecast-class, 65
mGARCHroll-class, 65
mGARCHsim-class, 66
mGARCHspec-class, 66

* datasets

dji3Qretw, 32

* methods

cgarchfilter-methods, 6
cgarchfit-methods, 8
cgarchsim-methods, 11
cgarchspec-methods, 14
dccfilter-methods, 17
dccfit-methods, 20
dccforecast-methods, 22
dccroll-methods, 25
dccsim-methods, 27
dccspec-methods, 30

73

fmoments-methods, 37
fscenario-methods, 39
gogarchfilter-methods, 45
gogarchfit-methods, 49
gogarchforecast-methods, 53
gogarchroll-methods, 56
gogarchsim-methods, 59
gogarchspec-methods, 61
goload-methods, 62
last-methods, 63

+ multivariate
fastica, 33
radical, 67

as.matrix,goGARCHfilter-method
(goGARCHfilter-class), 42
as.matrix,goGARCHfit-method
(goGARCHfit-class), 46
as.matrix,goGARCHforecast-method
(goGARCHforecast-class), 50
as.matrix, goGARCHsim-method
(go0GARCHsim-class), 57

betacokurt (goGARCHfit-class), 46
betacokurt,goGARCHfilter-method
(goGARCHfilter-class), 42
betacokurt, goGARCHfit-method
(goGARCHfit-class), 46
betacokurt, goGARCHforecast-method
(goGARCHforecast-class), 50
betacoskew (goGARCHfit-class), 46
betacoskew, goGARCHfilter-method
(goGARCHfilter-class), 42
betacoskew, goGARCHfit-method
(goGARCHfit-class), 46
betacoskew, goGARCHforecast-method
(goGARCHforecast-class), 50
betacovar (goGARCHfit-class), 46
betacovar,goGARCHfilter-method
(goGARCHfilter-class), 42

74

betacovar, goGARCHfit-method
(goGARCHfit-class), 46

betacovar, goGARCHforecast-method
(goGARCHforecast-class), 50

cGARCHfilter, 6
cgarchfilter, 3, 4
cgarchfilter (cgarchfilter-methods), 6
cgarchfilter,ANY-method
(cgarchfilter-methods), 6
cgarchfilter,cGARCHspec-method
(cgarchfilter-methods), 6
cGARCHfilter-class, 4
cgarchfilter-methods, 6
cGARCHfit, 6,9, 11
cgarchfit, 3,6, 7, 11
cgarchfit (cgarchfit-methods), 8
cgarchfit, ANY-method
(cgarchfit-methods), 8
cgarchfit, cGARCHspec-method
(cgarchfit-methods), 8
cGARCHfit-class, 7
cgarchfit-methods, 8
cGARCHsim, 12
cgarchsim, 3, 10
cgarchsim (cgarchsim-methods), 11
cgarchsim, ANY-method
(cgarchsim-methods), 11
cgarchsim, cGARCHfit-method
(cgarchsim-methods), 11
cGARCHsim-class, 10
cgarchsim-methods, 11
cGARCHspec, 6, 8, 15
cgarchspec, 3,6, 8, 13
cgarchspec (cgarchspec-methods), 14
cgarchspec, ANY-method
(cgarchspec-methods), 14
cgarchspec, UGARCHmultispec-method
(cgarchspec-methods), 14
cGARCHspec-class, 13
cgarchspec-methods, 14
coef,cGARCHfilter-method
(cGARCHfilter-class), 4
coef, cGARCHfit-method
(cGARCHfit-class), 7
coef,DCCfilter-method
(DCCfilter-class), 16
coef,DCCfit-method (DCCfit-class), 18
coef,DCCroll-method (DCCroll-class), 24

INDEX

coef, goGARCHfilter-method
(goGARCHfilter-class), 42
coef, goGARCHfit-method
(goGARCHfit-class), 46
coef,goGARCHforecast-method
(goGARCHforecast-class), 50
coef,goGARCHroll-method
(goGARCHroll-class), 54
convolution, 4/
convolution (goGARCHfit-class), 46
convolution, goGARCHfilter-method
(goGARCHfilter-class), 42
convolution, goGARCHfit-method
(goGARCHfit-class), 46
convolution, goGARCHforecast-method
(goGARCHforecast-class), 50
convolution, goGARCHroll-method
(g0GARCHroll-class), 54
convolution, goGARCHsim-method
(goGARCHsim-class), 57
cordist, 15

DCCfilter, I8

dccfilter, 3, 16, 30

dccfilter (decfilter-methods), 17

dccfilter,ANY-method
(dccfilter-methods), 17

dccfilter,DCCspec-method
(dccfilter-methods), 17

DCCfilter-class, 16

dccfilter-methods, 17

DCCfit, 21, 23, 26, 27

dccfit, 3, 18, 23,27

dccfit (decfit-methods), 20

dccfit,ANY-method (dccfit-methods), 20

dccfit,DCCspec-method (dccfit-methods),
20

DCCfit-class, 18

dccfit-methods, 20

DCCforecast, 23

dccforecast, 3, 21, 30

dccforecast (dccforecast-methods), 22

dccforecast,ANY-method
(dccforecast-methods), 22

dccforecast,DCCfit-method
(dccforecast-methods), 22

DCCforecast-class, 21

dccforecast-methods, 22

DCCroll, 26

INDEX

dccroll, 3, 21, 24, 30

dccroll (dccroll-methods), 25

dccroll, ANY-method (dccroll-methods), 25

dccroll,DCCspec-method
(dccroll-methods), 25

DCCroll-class, 24

dccroll-methods, 25

DCCsim, 28

dccsim, 3, 26, 30

dccsim (dccsim-methods), 27

dccsim, ANY-method (dccsim-methods), 27

dccsim,DCCfit-method (dccsim-methods),
27

dccsim,DCCspec-method (dccsim-methods),
27

DCCsim-class, 26

dccsim-methods, 27

DCCspec, 18, 20, 25, 27, 31

dccespec, 3, 18, 20, 27, 29

dccspec (dcecspec-methods), 30

dccspec, ANY-method (dccspec-methods), 30

dccspec, UGARCHmul tispec-method
(dccspec-methods), 30

DCCspec-class, 29

dccspec-methods, 30

DCCtest, 31

dfft (goGARCHfft-class), 41

dfft, goGARCHfft-method
(g0GARCHfft-class), 41

dji3Qretw, 32

fastica, 33, 62
first (last-methods), 63
first,ANY-method (last-methods), 63
first,array-method (last-methods), 63
first-methods (last-methods), 63
fitted, cGARCHfilter-method
(cGARCHfilter-class), 4
fitted, cGARCHfit-method
(cGARCHfit-class), 7
fitted, cGARCHsim-method
(cGARCHsim-class), 10
fitted,DCCfilter-method
(DCCfilter-class), 16
fitted,DCCfit-method (DCCfit-class), 18
fitted,DCCforecast-method
(DCCforecast-class), 21
fitted,DCCroll-method (DCCroll-class),
24

75

fitted,DCCsim-method (DCCsim-class), 26
fitted, fMoments-method
(fMoments-class), 36
fitted, fScenario-method
(fScenario-class), 38
fitted, goGARCHfilter-method
(goGARCHfilter-class), 42
fitted, goGARCHfit-method
(goGARCHfit-class), 46
fitted, goGARCHforecast-method
(goGARCHforecast-class), 50
fitted, goGARCHroll-method
(g0GARCHroll-class), 54
fMoments, 38, 62, 63
fmoments, 36, 63
fmoments (fmoments-methods), 37
fmoments, ANY-method (fmoments-methods),
37
fMoments-class, 36
fmoments-methods, 37
fScenario, 40, 62, 63
fscenario, 38, 63
fscenario (fscenario-methods), 39
fscenario, ANY-method
(fscenario-methods), 39
fScenario-class, 38
fscenario-methods, 39

GARCHfilter, 5, 16, 42, 64
GARCHfit, 7, 19, 46, 64
GARCHforecast, 21, 51, 65
GARCHroll, 24, 55, 65
GARCHsim, 10, 26, 58, 66
GARCHspec, 13, 29, 60, 66
goGARCHfft-class, 41
goGARCHfilter, 41, 45, 59
gogarchfilter, 3, 42
gogarchfilter (gogarchfilter-methods),
45
gogarchfilter, ANY-method
(gogarchfilter-methods), 45
gogarchfilter,goGARCHfit-method
(gogarchfilter-methods), 45
goGARCHfilter-class, 42
gogarchfilter-methods, 45
g0GARCHfit, 41, 45, 50, 54, 57, 59
gogarchfit, 3,42, 46, 62
gogarchfit (gogarchfit-methods), 49

76

gogarchfit, ANY-method
(gogarchfit-methods), 49
gogarchfit,goGARCHspec-method
(gogarchfit-methods), 49
goGARCHfit-class, 46
gogarchfit-methods, 49
goGARCHforecast, 41, 54
gogarchforecast, 3, 50
gogarchforecast
(gogarchforecast-methods), 53
gogarchforecast,ANY-method
(gogarchforecast-methods), 53
gogarchforecast, goGARCHfit-method
(gogarchforecast-methods), 53
goGARCHforecast-class, 50
gogarchforecast-methods, 53
goGARCHroll, 41, 57
gogarchroll, 3,41, 54
gogarchroll (gogarchroll-methods), 56
gogarchroll, ANY-method
(gogarchroll-methods), 56
gogarchroll, goGARCHspec-method
(gogarchroll-methods), 56
goGARCHroll-class, 54
gogarchroll-methods, 56
goGARCHsim, 41, 60
gogarchsim, 3, 58
gogarchsim (gogarchsim-methods), 59
gogarchsim, ANY-method
(gogarchsim-methods), 59
gogarchsim, goGARCHfilter-method
(gogarchsim-methods), 59
gogarchsim, goGARCHf it-method
(gogarchsim-methods), 59
goGARCHsim-class, 57
gogarchsim-methods, 59
goGARCHspec, 49, 56, 60, 62
gogarchspec, 3
gogarchspec (gogarchspec-methods), 61
gogarchspec, ANY-method
(gogarchspec-methods), 61
goGARCHspec-class, 60
gogarchspec-methods, 61
goget (fScenario-class), 38
goget,ANY-method (fScenario-class), 38
goget,fScenario-method
(fScenario-class), 38
goload (goload-methods), 62

INDEX

goload,ANY-method (goload-methods), 62
goload, fMoments-method
(goload-methods), 62
goload, fScenario-method
(goload-methods), 62
goload-methods, 62
gportmoments (goGARCHfit-class), 46
gportmoments, goGARCHfilter-method
(goGARCHfilter-class), 42
gportmoments, goGARCHfit-method
(goGARCHfit-class), 46
gportmoments, goGARCHforecast-method
(goGARCHforecast-class), 50
gportmoments, goGARCHroll-method
(g0GARCHroll-class), 54
gportmoments, goGARCHsim-method
(go0GARCHsim-class), 57

infocriteria,DCCfit-method
(DCCfit-class), 18

last (last-methods), 63
last,ANY-method (last-methods), 63
last,array-method (last-methods), 63
last-methods, 63
likelihood, cGARCHfilter-method
(cGARCHfilter-class), 4
likelihood, cGARCHfit-method
(cGARCHfit-class), 7
likelihood,DCCfilter-method
(DCCfilter-class), 16
likelihood,DCCfit-method
(DCCfit-class), 18
likelihood,DCCroll-method
(DCCroll-class), 24
likelihood, goGARCHfilter-method
(goGARCHfilter-class), 42
likelihood, goGARCHfit-method
(goGARCHfit-class), 46

MGARCHfilter, 5, 16, 42
MGARCHfilter-class, 64
mGARCHfit, 7, 19, 46
mMGARCHfit-class, 64
mGARCHforecast, 21, 51
MGARCHforecast-class, 65
MGARCHroll, 24, 55
MGARCHroll-class, 65
mGARCHsim, 70, 26, 58

INDEX

MGARCHsim-class, 66

mGARCHspec, 13, 29, 60
mGARCHspec-class, 66
multispec, 14, 30

nisurface (goGARCHfit-class), 46
nisurface,DCCfilter-method
(DCCfilter-class), 16
nisurface,DCCfit-method (DCCfit-class),
18
nisurface, goGARCHfilter-method
(goGARCHfilter-class), 42
nisurface, goGARCHfit-method
(goGARCHfit-class), 46
nportmoments (goGARCHf ft-class), 41
nportmoments, goGARCHf ft-method
(g0GARCHfft-class), 41

pfft (goGARCHfft-class), 41
pfft,goGARCHf ft-method
(g0GARCHfft-class), 41
plot,DCCfilter,missing-method
(DCCfilter-class), 16
plot,DCCfit,missing-method
(DCCfit-class), 18
plot,DCCforecast,missing-method
(DCCforecast-class), 21
plot,DCCroll,missing-method
(DCCroll-class), 24

gfft (goGARCHfft-class), 41
gfft, goGARCHfft-method
(g0GARCHfft-class), 41

radical, 62, 67
rcokurt (goGARCHfit-class), 46
rcokurt, fMoments-method
(fMoments-class), 36
rcokurt,goGARCHfilter-method
(g0GARCHfilter-class), 42
rcokurt, goGARCHfit-method
(goGARCHfit-class), 46
rcokurt, goGARCHforecast-method
(goGARCHforecast-class), 50
rcokurt, goGARCHroll-method
(g0GARCHroll-class), 54
rcokurt,goGARCHsim-method
(goGARCHsim-class), 57
rcor (goGARCHfit-class), 46

77

rcor,cGARCHfilter-method
(cGARCHfilter-class), 4
rcor,cGARCHfit-method
(cGARCHfit-class), 7
rcor,cGARCHsim-method
(cGARCHsim-class), 10
rcor,DCCfilter-method
(DCCfilter-class), 16
rcor,DCCfit-method (DCCfit-class), 18
rcor,DCCforecast-method
(DCCforecast-class), 21
rcor,DCCroll-method (DCCroll-class), 24
rcor,DCCsim-method (DCCsim-class), 26
rcor,goGARCHfilter-method
(goGARCHfilter-class), 42
rcor, goGARCHfit-method
(goGARCHfit-class), 46
rcor,goGARCHforecast-method
(goGARCHforecast-class), 50
rcor,goGARCHroll-method
(g0GARCHroll-class), 54
rcor,goGARCHsim-method
(goGARCHsim-class), 57
rcoskew (goGARCHfit-class), 46
rcoskew, fMoments-method
(fMoments-class), 36
rcoskew, goGARCHfilter-method
(goGARCHfilter-class), 42
rcoskew, goGARCHfit-method
(goGARCHfit-class), 46
rcoskew, goGARCHforecast-method
(goGARCHforecast-class), 50
rcoskew, goGARCHroll-method
(g0GARCHroll-class), 54
rcoskew, goGARCHsim-method
(goGARCHsim-class), 57
rcov (goGARCHfit-class), 46
rcov, cGARCHfilter-method
(cGARCHfilter-class), 4
rcov, cGARCHfit-method
(cGARCHfit-class), 7
rcov, cGARCHsim-method
(cGARCHsim-class), 10
rcov,DCCfilter-method
(DCCfilter-class), 16
rcov,DCCfit-method (DCCfit-class), 18
rcov,DCCforecast-method
(DCCforecast-class), 21

78

rcov,DCCroll-method (DCCroll-class), 24

rcov,DCCsim-method (DCCsim-class), 26

rcov, fMoments-method (fMoments-class),
36

rcov, goGARCHfilter-method
(g0GARCHfilter-class), 42

rcov, goGARCHfit-method
(go0GARCHfit-class), 46

rcov, goGARCHforecast-method
(goGARCHforecast-class), 50

rcov, goGARCHroll-method
(g0GARCHroll-class), 54

rcov, goGARCHsim-method
(g0GARCHsim-class), 57

residuals, cGARCHfilter-method
(cGARCHfilter-class), 4

residuals, cGARCHfit-method
(cGARCHfit-class), 7

residuals,DCCfilter-method
(DCCfilter-class), 16

residuals,DCCfit-method (DCCfit-class),
18

residuals, goGARCHfilter-method
(goGARCHfilter-class), 42

residuals, goGARCHfit-method
(g0GARCHfit-class), 46

rGARCH, 5, 7, 10, 13, 16, 19, 21, 24, 26, 29, 42,
46, 51, 55, 58, 60, 64—-66

rmgarch (rmgarch-package), 3

rmgarch-package, 3

rshape (DCCfit-class), 18

rshape, cGARCHfilter-method
(cGARCHfilter-class), 4

rshape, cGARCHfit-method
(cGARCHfit-class), 7

rshape,DCCfilter-method
(DCCfilter-class), 16

rshape,DCCfit-method (DCCfit-class), 18

rshape,DCCforecast-method
(DCCforecast-class), 21

rshape,DCCroll-method (DCCroll-class),
24

rskew (DCCfit-class), 18

rskew, cGARCHfilter-method
(cGARCHfilter-class), 4

rskew, cGARCHfit-method
(cGARCHfit-class), 7

rskew,DCCfilter-method

INDEX

(DCCfilter-class), 16
rskew,DCCfit-method (DCCfit-class), 18
rskew,DCCforecast-method

(DCCforecast-class), 21
rskew,DCCroll-method (DCCroll-class), 24

setfixed<-,cGARCHspec, vector-method
(cGARCHspec-class), 13

setfixed<-,DCCspec,vector-method
(DCCspec-class), 29

setstart<-,cGARCHspec, vector-method
(cGARCHspec-class), 13

setstart<-,DCCspec,vector-method
(DCCspec-class), 29

show, cGARCHfilter-method
(cGARCHfilter-class), 4

show, cGARCHfit-method
(cGARCHfit-class), 7

show, cGARCHsim-method
(cGARCHsim-class), 10

show, cGARCHspec-method
(cGARCHspec-class), 13

show,DCCfilter-method
(DCCfilter-class), 16

show,DCCfit-method (DCCfit-class), 18

show,DCCforecast-method
(DCCforecast-class), 21

show,DCCroll-method (DCCroll-class), 24

show,DCCsim-method (DCCsim-class), 26

show,DCCspec-method (DCCspec-class), 29

show, fMoments-method (fMoments-class),
36

show, fScenario-method
(fScenario-class), 38

show, goGARCHfilter-method
(goGARCHfilter-class), 42

show, goGARCHfit-method
(goGARCHfit-class), 46

show, goGARCHforecast-method
(goGARCHforecast-class), 50

show, goGARCHspec-method
(g0GARCHspec-class), 60

sigma, cGARCHfilter-method
(cGARCHfilter-class), 4

sigma, cGARCHfit-method
(cGARCHfit-class), 7

sigma, cGARCHsim-method
(cGARCHsim-class), 10

INDEX

sigma,DCCfilter-method
(DCCfilter-class), 16
sigma,DCCfit-method (DCCfit-class), 18
sigma,DCCforecast-method
(DCCforecast-class), 21
sigma,DCCroll-method (DCCroll-class), 24
sigma,DCCsim-method (DCCsim-class), 26
sigma, goGARCHforecast-method
(goGARCHforecast-class), 50
sigma, goGARCHroll-method
(g0GARCHroll-class), 54

uGARCHmultifit, 9, 20, 21
UGARCHmultispec, 14, 30

varxfilter, 28, 49
varxfilter (varxfit), 69
varxfit, 9, 20, 28, 69
varxforecast (varxfit), 69
varxsim (varxfit), 69

wmargin, 72

79

	rmgarch-package
	cGARCHfilter-class
	cgarchfilter-methods
	cGARCHfit-class
	cgarchfit-methods
	cGARCHsim-class
	cgarchsim-methods
	cGARCHspec-class
	cgarchspec-methods
	cordist
	DCCfilter-class
	dccfilter-methods
	DCCfit-class
	dccfit-methods
	DCCforecast-class
	dccforecast-methods
	DCCroll-class
	dccroll-methods
	DCCsim-class
	dccsim-methods
	DCCspec-class
	dccspec-methods
	DCCtest
	dji30retw
	fastica
	fMoments-class
	fmoments-methods
	fScenario-class
	fscenario-methods
	goGARCHfft-class
	goGARCHfilter-class
	gogarchfilter-methods
	goGARCHfit-class
	gogarchfit-methods
	goGARCHforecast-class
	gogarchforecast-methods
	goGARCHroll-class
	gogarchroll-methods
	goGARCHsim-class
	gogarchsim-methods
	goGARCHspec-class
	gogarchspec-methods
	goload-methods
	last-methods
	mGARCHfilter-class
	mGARCHfit-class
	mGARCHforecast-class
	mGARCHroll-class
	mGARCHsim-class
	mGARCHspec-class
	radical
	varxfit
	wmargin
	Index

