---
title: Analyzing a dataset
author: Manuel Reif
output:
prettydoc::html_pretty:
theme: cayman
highlight: github
---
# Analyzing a simulated data set
```{r loadall}
library(PP)
library(data.table)
```
## First example
```{r simulate_data1}
suppressWarnings(RNGversion("3.5.0"))
set.seed(1526)
# intercepts
diffpar <- seq(-3.6,3,length=15)
# slope parameters
sl <- round(runif(15,0.5,1.5),2)
la <- round(runif(15,0,0.25),2)
ua <- round(runif(15,0.8,1),2)
awm <- PP::sim_4pl(beta = diffpar, alpha = sl,
lowerA = la, upperA = ua,
theta = rnorm(200))
awm <- as.data.frame(awm)
```
### Estimating and using person parameters
```{r data_wrangling1}
out <- PPass(respdf = awm,thres = diffpar,
items="all", mod=c("1PL"),
fitindices=c("lz","lzstar","infit","outfit"))
# create a data.table
outdt <- data.table(out)
outdt[, ID := 1:.N]
outdt[, roundest := factor(round(estimate,8))]
# Compute Percentile Ranks with the Person Parameters
outdtu <- unique(outdt[,su := .N, keyby=roundest], by="roundest")
outdtu[,PR :=cumsum(su)/sum(su) * 100]
outdt <- outdt[outdtu[,list(roundest,PR)],,on="roundest"]
setorder(outdt,ID)
outdt[, c("su") := NULL]
# done
outdt
```
### Using person fit statistics
## Second example
Now there are two groups.
```{r simulate_data2}
awm <- PP::sim_4pl(beta = diffpar, alpha = sl, lowerA = la,
upperA = ua, theta = c(rnorm(500),rnorm(500,0.5,1.2)))
awm <- as.data.frame(awm)
```
### Estimating and using person parameters
```{r data_wrangling2}
out <- PPass(respdf = awm, thres = diffpar,
items="all", mod=c("1PL"),
fitindices= c("lz","lzstar","infit","outfit"))
outdt <- data.table(out)
outdt[, ID := 1:.N]
outdt[, agegroup := rep(c("young","old"),each=500)]
outdt[, roundest := factor(round(estimate,8))]
outdtu <- unique(outdt[,su := .N, keyby=c("agegroup","roundest")], by=c("agegroup","roundest"))[,PR :=cumsum(su)/sum(su) * 100, by=agegroup]
outdt <- outdt[outdtu[,list(agegroup,roundest,PR)],,on=c("agegroup","roundest")]
setorder(outdt,ID)
outdt[, c("su") := NULL]
outdt
```