A C D E F G H I L M P Q R S T V
| add_class | Add a class | 
| adjust_trajectories | Adjust trajectories due to the intercurrent event (ICE) | 
| adjust_trajectories_single | Adjust trajectory of a subject's outcome due to the intercurrent event (ICE) | 
| analyse | Analyse Multiple Imputed Datasets | 
| ancova | Analysis of Covariance | 
| ancova_single | Implements an Analysis of Covariance (ANCOVA) | 
| antidepressant_data | Antidepressant trial data | 
| apply_delta | Applies delta adjustment | 
| as.data.frame.pool | Pool analysis results obtained from the imputed datasets | 
| assert_variables_exist | Assert that all variables exist within a dataset | 
| as_analysis | Construct an 'analysis' object | 
| as_ascii_table | as_ascii_table | 
| as_class | Set Class | 
| as_cropped_char | as_cropped_char | 
| as_dataframe | Convert object to dataframe | 
| as_draws | Creates a 'draws' object | 
| as_imputation | Create an imputation object | 
| as_indices | Convert indicator to index | 
| as_mmrm_df | Creates a "MMRM" ready dataset | 
| as_mmrm_formula | Create MMRM formula | 
| as_model_df | Expand 'data.frame' into a design matrix | 
| as_simple_formula | Creates a simple formula object from a string | 
| as_stan_array | As array | 
| as_strata | Create vector of Stratas | 
| as_vcov | Create simulated datasets | 
| char2fct | Convert character variables to factor | 
| check_ESS | Diagnostics of the MCMC based on ESS | 
| check_hmc_diagn | Diagnostics of the MCMC based on HMC-related measures. | 
| check_mcmc | Diagnostics of the MCMC | 
| compute_sigma | Compute covariance matrix for some reference-based methods (JR, CIR) | 
| control | Control the computational details of the imputation methods | 
| control_bayes | Control the computational details of the imputation methods | 
| convert_to_imputation_list_df | Convert list of 'imputation_list_single()' objects to an 'imputation_list_df()' object (i.e. a list of 'imputation_df()' objects's) | 
| delta_template | Create a delta 'data.frame' template | 
| draws | Fit the base imputation model and get parameter estimates | 
| draws.approxbayes | Fit the base imputation model and get parameter estimates | 
| draws.bayes | Fit the base imputation model and get parameter estimates | 
| draws.bmlmi | Fit the base imputation model and get parameter estimates | 
| draws.condmean | Fit the base imputation model and get parameter estimates | 
| d_lagscale | Calculate delta from a lagged scale coefficient | 
| eval_mmrm | Evaluate a call to mmrm | 
| expand | Expand and fill in missing 'data.frame' rows | 
| expand_locf | Expand and fill in missing 'data.frame' rows | 
| extract_covariates | Extract Variables from string vector | 
| extract_data_nmar_as_na | Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy) | 
| extract_draws | Extract draws from a 'stanfit' object | 
| extract_imputed_df | Extract imputed dataset | 
| extract_imputed_dfs | Extract imputed datasets | 
| extract_params | Extract parameters from a MMRM model | 
| fill_locf | Expand and fill in missing 'data.frame' rows | 
| fit_mcmc | Fit the base imputation model using a Bayesian approach | 
| fit_mmrm | Fit a MMRM model | 
| format_method_descriptions | Format method descriptions | 
| generate_data_single | Generate data for a single group | 
| getStrategies | Get imputation strategies | 
| get_bootstrap_stack | Creates a stack object populated with bootstrapped samples | 
| get_conditional_parameters | Derive conditional multivariate normal parameters | 
| get_delta_template | Get delta utility variables | 
| get_draws_mle | Fit the base imputation model on bootstrap samples | 
| get_ESS | Extract the Effective Sample Size (ESS) from a 'stanfit' object | 
| get_ests_bmlmi | Von Hippel and Bartlett pooling of BMLMI method | 
| get_example_data | Simulate a realistic example dataset | 
| get_jackknife_stack | Creates a stack object populated with jackknife samples | 
| get_mmrm_sample | Fit MMRM and returns parameter estimates | 
| get_pattern_groups | Determine patients missingness group | 
| get_pattern_groups_unique | Get Pattern Summary | 
| get_pool_components | Expected Pool Components | 
| get_visit_distribution_parameters | Derive visit distribution parameters | 
| has_class | Does object have a class ? | 
| ife | if else | 
| imputation_df | Create a valid 'imputation_df' object | 
| imputation_list_df | List of imputations_df | 
| imputation_list_single | A collection of 'imputation_singles()' grouped by a single subjid ID | 
| imputation_single | Create a valid 'imputation_single' object | 
| impute | Create imputed datasets | 
| impute.condmean | Create imputed datasets | 
| impute.random | Create imputed datasets | 
| impute_data_individual | Impute data for a single subject | 
| impute_internal | Create imputed datasets | 
| impute_outcome | Sample outcome value | 
| invert | invert | 
| invert_indexes | Invert and derive indexes | 
| is_absent | Is value absent | 
| is_char_fact | Is character or factor | 
| is_char_one | Is single character | 
| is_in_rbmi_development | Is package in development mode? | 
| is_num_char_fact | Is character, factor or numeric | 
| locf | Last Observation Carried Forward | 
| longDataConstructor | R6 Class for Storing / Accessing & Sampling Longitudinal Data | 
| lsmeans | Least Square Means | 
| ls_design | Calculate design vector for the lsmeans | 
| ls_design_counterfactual | Calculate design vector for the lsmeans | 
| ls_design_equal | Calculate design vector for the lsmeans | 
| ls_design_proportional | Calculate design vector for the lsmeans | 
| make_rbmi_cluster | Create a 'rbmi' ready cluster | 
| method | Set the multiple imputation methodology | 
| method_approxbayes | Set the multiple imputation methodology | 
| method_bayes | Set the multiple imputation methodology | 
| method_bmlmi | Set the multiple imputation methodology | 
| method_condmean | Set the multiple imputation methodology | 
| parametric_ci | Calculate parametric confidence intervals | 
| par_lapply | Parallelise Lapply | 
| pool | Pool analysis results obtained from the imputed datasets | 
| pool_bootstrap_normal | Bootstrap Pooling via normal approximation | 
| pool_bootstrap_percentile | Bootstrap Pooling via Percentiles | 
| pool_internal | Internal Pool Methods | 
| pool_internal.bmlmi | Internal Pool Methods | 
| pool_internal.bootstrap | Internal Pool Methods | 
| pool_internal.jackknife | Internal Pool Methods | 
| pool_internal.rubin | Internal Pool Methods | 
| prepare_stan_data | Prepare input data to run the Stan model | 
| print.analysis | Print 'analysis' object | 
| print.draws | Print 'draws' object | 
| print.imputation | Print 'imputation' object | 
| print.pool | Pool analysis results obtained from the imputed datasets | 
| progressLogger | R6 Class for printing current sampling progress | 
| pval_percentile | P-value of percentile bootstrap | 
| QR_decomp | QR decomposition | 
| random_effects_expr | Construct random effects formula | 
| rbmi-settings | rbmi settings | 
| record | Capture all Output | 
| recursive_reduce | recursive_reduce | 
| remove_if_all_missing | Remove subjects from dataset if they have no observed values | 
| rubin_df | Barnard and Rubin degrees of freedom adjustment | 
| rubin_rules | Combine estimates using Rubin's rules | 
| sample_ids | Sample Patient Ids | 
| sample_list | Create and validate a 'sample_list' object | 
| sample_mvnorm | Sample random values from the multivariate normal distribution | 
| sample_single | Create object of 'sample_single' class | 
| scalerConstructor | R6 Class for scaling (and un-scaling) design matrices | 
| set_options | rbmi settings | 
| set_simul_pars | Set simulation parameters of a study group. | 
| set_vars | Set key variables | 
| simulate_data | Generate data | 
| simulate_dropout | Simulate drop-out | 
| simulate_ice | Simulate intercurrent event | 
| simulate_test_data | Create simulated datasets | 
| sort_by | Sort 'data.frame' | 
| split_dim | Transform array into list of arrays | 
| split_imputations | Split a flat list of 'imputation_single()' into multiple 'imputation_df()"s by ID | 
| Stack | R6 Class for a FIFO stack | 
| strategies | Strategies | 
| strategy_CIR | Strategies | 
| strategy_CR | Strategies | 
| strategy_JR | Strategies | 
| strategy_LMCF | Strategies | 
| strategy_MAR | Strategies | 
| string_pad | string_pad | 
| str_contains | Does a string contain a substring | 
| transpose_imputations | Transpose imputations | 
| transpose_results | Transpose results object | 
| transpose_samples | Transpose samples | 
| validate | Generic validation method | 
| validate.analysis | Validate 'analysis' objects | 
| validate.draws | Validate 'draws' object | 
| validate.is_mar | Validate 'is_mar' for a given subject | 
| validate.ivars | Validate inputs for 'vars' | 
| validate.references | Validate user supplied references | 
| validate.sample_list | Validate 'sample_list' object | 
| validate.sample_single | Validate 'sample_single' object | 
| validate.simul_pars | Validate a 'simul_pars' object | 
| validate.stan_data | Validate a 'stan_data' object | 
| validate_analyse_pars | Validate analysis results | 
| validate_dataice | Validate a longdata object | 
| validate_datalong | Validate a longdata object | 
| validate_datalong_complete | Validate a longdata object | 
| validate_datalong_notMissing | Validate a longdata object | 
| validate_datalong_types | Validate a longdata object | 
| validate_datalong_unifromStrata | Validate a longdata object | 
| validate_datalong_varExists | Validate a longdata object | 
| validate_strategies | Validate user specified strategies |