BEANS: Statistical Models
    
    Consider a scenario with three discrete covariates \(B_1,B_2,B_3\). Let
    \(Y\) denote the response. Let \(G\) denote a subgroup defined by the
    combination of \(B_1,B_2,B_3\).
    
    
    \begin{align*}
       Y|G=g    &\sim N(\theta_g, \sigma^2) \\
       \theta_g &\equiv \tau \\
       \tau     &\sim N(0, 1000) \\
       \sigma^2 &\sim \mbox{Gamma}(0.001,0.001)
    \end{align*}
    
    Full stratification
    \begin{align*}
     Y| G=g   &\sim N(\theta_g, \sigma^2) \\
     \theta_g &\sim N(0, 1000) \\
     \sigma^2 &\sim \mbox{Gamma}(0.001,0.001)
    \end{align*}
    
    
    \begin{align*}
    Y|B_1,B_2,B_3 & \sim N(\theta_g,\sigma^2) \\
    \theta_g &= \beta_0 + \beta_1 B_1 + \beta_2 B_2 + \beta_3 B_3 \\
    \beta_k &\sim N(0,1000) \qquad k=1,\ldots,3\\
     \sigma^2 &\sim \mbox{Gamma}(0.001,0.001)
    \end{align*}
    
    \begin{align*}
    Y|B_1,B_2,B_3 & \sim N(\theta_g,\sigma^2) \\
    \theta_g &= \tau + \gamma_1 B_1 + \gamma_2 B_2 + \gamma_3 B_3 + \psi_g$
    \beta_k &\sim N(0,1000) \qquad k=1,\ldots,3\\
     \sigma^2 &\sim \mbox{Gamma}(0.001,0.001)
    \end{align*}
    
    \begin{align*}
    &\theta_g = \tau + \gamma_1 B_1 + \gamma_2 B_2 + \gamma_3 B_3 + \psi_g \\
    &\tau, \gamma_1,\gamma_2,\gamma_3 \sim N(0, 10^6)\\
    &\psi_g \sim N(0, w^2)\\
    &w \sim Half N(1)
    \end{align*}
    
    \begin{align*}
    \theta_g &= \tau + \gamma_1 B_1 + \gamma_2 B_2 + \gamma_3 B_3 \\
    \tau &\sim N(0, 10^6) \\
    \gamma_k &\sim N(0, w^2)\\
    w &\sim Half N(1)
    \end{align*}
    
    \begin{align*}
    \theta_g &= \tau + \gamma_1 B_1 + \gamma_2 B_2 + \gamma_3 B_3 + \delta_1
    B_1B_2 + \delta_2 B_1 B_3 + \delta_3 B_2B_3 + \alpha B_1B_2B_3 \\
    \tau     &\sim N(0, 10^6) \\
    \gamma_k &\sim N(0, w_1^2)\\
    \delta_k &\sim N(0, w_2^2)\\
    \alpha   &\sim N(0,w_3^2) \\
    w_l     & \sim Half N(1)
    \end{align*}