| *.GauPro_kernel | Kernel product |
| +.GauPro_kernel | Kernel sum |
| arma_mult_cube_vec | Cube multiply over first dimension |
| corr_cubic_matrix_symC | Correlation Cubic matrix in C (symmetric) |
| corr_exponential_matrix_symC | Correlation Gaussian matrix in C (symmetric) |
| corr_gauss_dCdX | Correlation Gaussian matrix gradient in C using Armadillo |
| corr_gauss_matrix | Gaussian correlation |
| corr_gauss_matrixC | Correlation Gaussian matrix in C using Rcpp |
| corr_gauss_matrix_armaC | Correlation Gaussian matrix in C using Armadillo |
| corr_gauss_matrix_symC | Correlation Gaussian matrix in C (symmetric) |
| corr_gauss_matrix_sym_armaC | Correlation Gaussian matrix in C using Armadillo (symmetric) |
| corr_latentfactor_matrixmatrixC | Correlation Latent factor matrix in C (symmetric) |
| corr_latentfactor_matrix_symC | Correlation Latent factor matrix in C (symmetric) |
| corr_matern32_matrix_symC | Correlation Matern 3/2 matrix in C (symmetric) |
| corr_matern52_matrix_symC | Correlation Gaussian matrix in C (symmetric) |
| corr_orderedfactor_matrixmatrixC | Correlation ordered factor matrix in C (symmetric) |
| corr_orderedfactor_matrix_symC | Correlation ordered factor matrix in C (symmetric) |
| Cubic | Cubic Kernel R6 class |
| Exponential | Exponential Kernel R6 class |
| FactorKernel | Factor Kernel R6 class |
| GauPro | GauPro_selector |
| GauPro_base | Class providing object with methods for fitting a GP model |
| GauPro_Gauss | Corr Gauss GP using inherited optim |
| GauPro_Gauss_LOO | Corr Gauss GP using inherited optim |
| GauPro_kernel | Kernel R6 class |
| GauPro_kernel_beta | Beta Kernel R6 class |
| GauPro_kernel_model | Gaussian process model with kernel |
| GauPro_kernel_model_LOO | Corr Gauss GP using inherited optim |
| GauPro_trend | Trend R6 class |
| Gaussian | Gaussian Kernel R6 class |
| Gaussian_devianceC | Calculate the Gaussian deviance in C |
| Gaussian_hessianC | Calculate Hessian for a GP with Gaussian correlation |
| Gaussian_hessianCC | Gaussian hessian in C |
| Gaussian_hessianR | Calculate Hessian for a GP with Gaussian correlation |
| GowerFactorKernel | Gower factor Kernel R6 class |
| gpkm | Gaussian process regression model |
| gradfuncarray | Calculate gradfunc in optimization to speed up. NEEDS TO APERM dC_dparams Doesn't need to be exported, should only be useful in functions. |
| gradfuncarrayR | Calculate gradfunc in optimization to speed up. NEEDS TO APERM dC_dparams Doesn't need to be exported, should only be useful in functions. |
| IgnoreIndsKernel | Kernel R6 class |
| kernel_cubic_dC | Derivative of cubic kernel covariance matrix in C |
| kernel_exponential_dC | Derivative of Matern 5/2 kernel covariance matrix in C |
| kernel_gauss_dC | Derivative of Gaussian kernel covariance matrix in C |
| kernel_latentFactor_dC | Derivative of covariance matrix of X with respect to kernel parameters for the Latent Factor Kernel |
| kernel_matern32_dC | Derivative of Matern 5/2 kernel covariance matrix in C |
| kernel_matern52_dC | Derivative of Matern 5/2 kernel covariance matrix in C |
| kernel_orderedFactor_dC | Derivative of covariance matrix of X with respect to kernel parameters for the Ordered Factor Kernel |
| kernel_product | Gaussian Kernel R6 class |
| kernel_sum | Gaussian Kernel R6 class |
| LatentFactorKernel | Latent Factor Kernel R6 class |
| Matern32 | Matern 3/2 Kernel R6 class |
| Matern52 | Matern 5/2 Kernel R6 class |
| OrderedFactorKernel | Ordered Factor Kernel R6 class |
| Periodic | Periodic Kernel R6 class |
| PowerExp | Power Exponential Kernel R6 class |
| predict.GauPro | Predict for class GauPro |
| print.summary.GauPro | Print summary.GauPro |
| RatQuad | Rational Quadratic Kernel R6 class |
| sqrt_matrix | Find the square root of a matrix |
| summary.GauPro | if (F) # Plot is automatically dispatched, same with print and format #' Plot for class GauPro #' #' @param x Object of class GauPro #' @param ... Additional parameters #' #' @return Nothing #' @export #' #' @examples #' n <- 12 #' x <- matrix(seq(0,1,length.out = n), ncol=1) #' y <- sin(2*pi*x) + rnorm(n,0,1e-1) #' gp <- GauPro(X=x, Z=y, parallel=FALSE) #' if (requireNamespace("MASS", quietly = TRUE)) #' plot(gp) #' #' plot.GauPro <- function(x, ...) x$plot(...) # if (x$D == 1) # x$cool1Dplot(...) # else if (x$D == 2) # x$plot2D(...) # else # # stop("No plot method for higher than 2 dimension") # x$plotmarginal() # Summary for GauPro object |
| trend_0 | Trend R6 class |
| trend_c | Trend R6 class |
| trend_LM | Trend R6 class |
| Triangle | Triangle Kernel R6 class |
| White | White noise Kernel R6 class |