A B C D E G I J L M N O P R S T U W X misc
| adam_fit_impl | Low-Level ADAM function for translating modeltime to forecast |
| adam_params | Tuning Parameters for ADAM Models |
| Adam_predict_impl | Bridge prediction function for ADAM models |
| adam_reg | General Interface for ADAM Regression Models |
| add_modeltime_model | Add a Model into a Modeltime Table |
| arima_boost | General Interface for "Boosted" ARIMA Regression Models |
| Arima_fit_impl | Low-Level ARIMA function for translating modeltime to forecast |
| arima_params | Tuning Parameters for ARIMA Models |
| Arima_predict_impl | Bridge prediction function for ARIMA models |
| arima_reg | General Interface for ARIMA Regression Models |
| arima_xgboost_fit_impl | Bridge ARIMA-XGBoost Modeling function |
| arima_xgboost_predict_impl | Bridge prediction Function for ARIMA-XGBoost Models |
| as_modeltime_table | Scale forecast analysis with a Modeltime Table |
| auto_adam_fit_impl | Low-Level ADAM function for translating modeltime to forecast |
| Auto_adam_predict_impl | Bridge prediction function for AUTO ADAM models |
| auto_arima_fit_impl | Low-Level ARIMA function for translating modeltime to forecast |
| auto_arima_xgboost_fit_impl | Bridge ARIMA-XGBoost Modeling function |
| bake_xreg_recipe | Developer Tools for processing XREGS (Regressors) |
| changepoint_num | Tuning Parameters for Prophet Models |
| changepoint_range | Tuning Parameters for Prophet Models |
| combination_method | Tuning Parameters for TEMPORAL HIERARCHICAL Models |
| combine_modeltime_tables | Combine multiple Modeltime Tables into a single Modeltime Table |
| control_fit_workflowset | Control aspects of the training process |
| control_modeltime | Control aspects of the training process |
| control_nested_fit | Control aspects of the training process |
| control_nested_forecast | Control aspects of the training process |
| control_nested_refit | Control aspects of the training process |
| control_refit | Control aspects of the training process |
| create_model_grid | Helper to make 'parsnip' model specs from a 'dials' parameter grid |
| create_xreg_recipe | Developer Tools for preparing XREGS (Regressors) |
| croston_fit_impl | Low-Level Exponential Smoothing function for translating modeltime to forecast |
| croston_predict_impl | Bridge prediction function for CROSTON models |
| damping | Tuning Parameters for Exponential Smoothing Models |
| damping_smooth | Tuning Parameters for Exponential Smoothing Models |
| default_forecast_accuracy_metric_set | Forecast Accuracy Metrics Sets |
| distribution | Tuning Parameters for ADAM Models |
| error | Tuning Parameters for Exponential Smoothing Models |
| ets_fit_impl | Low-Level Exponential Smoothing function for translating modeltime to forecast |
| ets_predict_impl | Bridge prediction function for Exponential Smoothing models |
| exp_smoothing | General Interface for Exponential Smoothing State Space Models |
| exp_smoothing_params | Tuning Parameters for Exponential Smoothing Models |
| extended_forecast_accuracy_metric_set | Forecast Accuracy Metrics Sets |
| extend_timeseries | Prepared Nested Modeltime Data |
| extract_nested_best_model_report | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_error_report | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_future_forecast | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_modeltime_table | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_test_accuracy | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_test_forecast | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_test_split | Log Extractor Functions for Modeltime Nested Tables |
| extract_nested_train_split | Log Extractor Functions for Modeltime Nested Tables |
| get_arima_description | Get model descriptions for Arima objects |
| get_model_description | Get model descriptions for parsnip, workflows & modeltime objects |
| get_tbats_description | Get model descriptions for TBATS objects |
| growth | Tuning Parameters for Prophet Models |
| information_criteria | Tuning Parameters for ADAM Models |
| is_calibrated | Test if a Modeltime Table has been calibrated |
| is_modeltime_model | Test if object contains a fitted modeltime model |
| is_modeltime_table | Test if object is a Modeltime Table |
| is_residuals | Test if a table contains residuals. |
| juice_xreg_recipe | Developer Tools for processing XREGS (Regressors) |
| load_namespace | These are not intended for use by the general public. |
| log_extractors | Log Extractor Functions for Modeltime Nested Tables |
| m750 | The 750th Monthly Time Series used in the M4 Competition |
| m750_models | Three (3) Models trained on the M750 Data (Training Set) |
| m750_splits | The results of train/test splitting the M750 Data |
| m750_training_resamples | The Time Series Cross Validation Resamples the M750 Data (Training Set) |
| maape | Mean Arctangent Absolute Percentage Error |
| maape.data.frame | Mean Arctangent Absolute Percentage Error |
| maape_vec | Mean Arctangent Absolute Percentage Error |
| make_ts_splits | Generate a Time Series Train/Test Split Indicies |
| metric_sets | Forecast Accuracy Metrics Sets |
| modeltime_accuracy | Calculate Accuracy Metrics |
| modeltime_calibrate | Preparation for forecasting |
| modeltime_fit_workflowset | Fit a 'workflowset' object to one or multiple time series |
| modeltime_forecast | Forecast future data |
| modeltime_nested_fit | Fit Tidymodels Workflows to Nested Time Series |
| modeltime_nested_forecast | Modeltime Nested Forecast |
| modeltime_nested_refit | Refits a Nested Modeltime Table |
| modeltime_nested_select_best | Select the Best Models from Nested Modeltime Table |
| modeltime_refit | Refit one or more trained models to new data |
| modeltime_residuals | Extract Residuals Information |
| modeltime_residuals_test | Apply Statistical Tests to Residuals |
| modeltime_table | Scale forecast analysis with a Modeltime Table |
| naive_fit_impl | Low-Level NAIVE Forecast |
| naive_predict_impl | Bridge prediction function for NAIVE Models |
| naive_reg | General Interface for NAIVE Forecast Models |
| nest_timeseries | Prepared Nested Modeltime Data |
| new_modeltime_bridge | Constructor for creating modeltime models |
| nnetar_fit_impl | Low-Level NNETAR function for translating modeltime to forecast |
| nnetar_params | Tuning Parameters for NNETAR Models |
| nnetar_predict_impl | Bridge prediction function for ARIMA models |
| nnetar_reg | General Interface for NNETAR Regression Models |
| non_seasonal_ar | Tuning Parameters for ARIMA Models |
| non_seasonal_differences | Tuning Parameters for ARIMA Models |
| non_seasonal_ma | Tuning Parameters for ARIMA Models |
| num_networks | Tuning Parameters for NNETAR Models |
| outliers_treatment | Tuning Parameters for ADAM Models |
| panel_tail | Filter the last N rows (Tail) for multiple time series |
| parallel_start | Start parallel clusters using 'parallel' package |
| parallel_stop | Start parallel clusters using 'parallel' package |
| parse_index | Developer Tools for parsing date and date-time information |
| parse_index_from_data | Developer Tools for parsing date and date-time information |
| parse_period_from_index | Developer Tools for parsing date and date-time information |
| plot_modeltime_forecast | Interactive Forecast Visualization |
| plot_modeltime_residuals | Interactive Residuals Visualization |
| pluck_modeltime_model | Extract model by model id in a Modeltime Table |
| pluck_modeltime_model.mdl_time_tbl | Extract model by model id in a Modeltime Table |
| predict.recursive | Recursive Model Predictions |
| predict.recursive_panel | Recursive Model Predictions |
| prep_nested | Prepared Nested Modeltime Data |
| prior_scale_changepoints | Tuning Parameters for Prophet Models |
| prior_scale_holidays | Tuning Parameters for Prophet Models |
| prior_scale_seasonality | Tuning Parameters for Prophet Models |
| probability_model | Tuning Parameters for ADAM Models |
| prophet_boost | General Interface for Boosted PROPHET Time Series Models |
| prophet_fit_impl | Low-Level PROPHET function for translating modeltime to PROPHET |
| prophet_params | Tuning Parameters for Prophet Models |
| prophet_predict_impl | Bridge prediction function for PROPHET models |
| prophet_reg | General Interface for PROPHET Time Series Models |
| prophet_xgboost_fit_impl | Low-Level PROPHET function for translating modeltime to Boosted PROPHET |
| prophet_xgboost_predict_impl | Bridge prediction function for Boosted PROPHET models |
| pull_modeltime_model | Extract model by model id in a Modeltime Table |
| pull_modeltime_residuals | Extracts modeltime residuals data from a Modeltime Model |
| pull_parsnip_preprocessor | Pulls the Formula from a Fitted Parsnip Model Object |
| recipe_helpers | Developer Tools for processing XREGS (Regressors) |
| recursive | Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model |
| regressors_treatment | Tuning Parameters for ADAM Models |
| season | Tuning Parameters for Exponential Smoothing Models |
| seasonality_daily | Tuning Parameters for Prophet Models |
| seasonality_weekly | Tuning Parameters for Prophet Models |
| seasonality_yearly | Tuning Parameters for Prophet Models |
| seasonal_ar | Tuning Parameters for ARIMA Models |
| seasonal_differences | Tuning Parameters for ARIMA Models |
| seasonal_ma | Tuning Parameters for ARIMA Models |
| seasonal_period | Tuning Parameters for Time Series (ts-class) Models |
| seasonal_reg | General Interface for Multiple Seasonality Regression Models (TBATS, STLM) |
| select_order | Tuning Parameters for ADAM Models |
| smooth_fit_impl | Low-Level Exponential Smoothing function for translating modeltime to forecast |
| smooth_level | Tuning Parameters for Exponential Smoothing Models |
| smooth_predict_impl | Bridge prediction function for Exponential Smoothing models |
| smooth_seasonal | Tuning Parameters for Exponential Smoothing Models |
| smooth_trend | Tuning Parameters for Exponential Smoothing Models |
| snaive_fit_impl | Low-Level SNAIVE Forecast |
| snaive_predict_impl | Bridge prediction function for SNAIVE Models |
| split_nested_timeseries | Prepared Nested Modeltime Data |
| stlm_arima_fit_impl | Low-Level stlm function for translating modeltime to forecast |
| stlm_arima_predict_impl | Bridge prediction function for ARIMA models |
| stlm_ets_fit_impl | Low-Level stlm function for translating modeltime to forecast |
| stlm_ets_predict_impl | Bridge prediction function for ARIMA models |
| summarize_accuracy_metrics | Summarize Accuracy Metrics |
| table_modeltime_accuracy | Interactive Accuracy Tables |
| tbats_fit_impl | Low-Level tbats function for translating modeltime to forecast |
| tbats_predict_impl | Bridge prediction function for ARIMA models |
| temporal_hierarchy | General Interface for Temporal Hierarchical Forecasting (THIEF) Models |
| temporal_hierarchy_params | Tuning Parameters for TEMPORAL HIERARCHICAL Models |
| temporal_hier_fit_impl | Low-Level Temporaral Hierarchical function for translating modeltime to forecast |
| temporal_hier_predict_impl | Bridge prediction function for TEMPORAL HIERARCHICAL models |
| theta_fit_impl | Low-Level Exponential Smoothing function for translating modeltime to forecast |
| theta_predict_impl | Bridge prediction function for THETA models |
| time_series_params | Tuning Parameters for Time Series (ts-class) Models |
| trend | Tuning Parameters for Exponential Smoothing Models |
| trend_smooth | Tuning Parameters for Exponential Smoothing Models |
| type_sum.mdl_time_tbl | Succinct summary of Modeltime Tables |
| update_modeltime_description | Update the model description by model id in a Modeltime Table |
| update_modeltime_model | Update the model by model id in a Modeltime Table |
| update_model_description | Update the model description by model id in a Modeltime Table |
| use_constant | Tuning Parameters for ADAM Models |
| use_model | Tuning Parameters for TEMPORAL HIERARCHICAL Models |
| window_function_fit_impl | Low-Level Window Forecast |
| window_function_predict_impl | Bridge prediction function for window Models |
| window_reg | General Interface for Window Forecast Models |
| xgboost_impl | Wrapper for parsnip::xgb_train |
| xgboost_predict | Wrapper for xgboost::predict |
| .prepare_panel_transform | Prepare Recursive Transformations |
| .prepare_transform | Prepare Recursive Transformations |