| BayesianTools-package | BayesianTools |
| applySettingsDefault | Provides the default settings for the different samplers in runMCMC |
| BayesianTools | BayesianTools |
| calibrationTest | Simulation-based calibration tests |
| checkBayesianSetup | Checks if an object is of class 'BayesianSetup' |
| convertCoda | Convert coda::mcmc objects to BayesianTools::mcmcSampler |
| correlationPlot | Flexible function to create correlation density plots |
| createBayesianSetup | Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc. |
| createBetaPrior | Convenience function to create a beta prior |
| createLikelihood | Creates a standardized likelihood class#' |
| createMcmcSamplerList | Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers |
| createMixWithDefaults | Allows to mix a given parameter vector with a default parameter vector |
| createPosterior | Creates a standardized posterior class |
| createPrior | Creates a standardized prior class |
| createPriorDensity | Fits a density function to a multivariate sample |
| createProposalGenerator | Factory that creates a proposal generator |
| createSmcSamplerList | Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers |
| createTruncatedNormalPrior | Convenience function to create a truncated normal prior |
| createUniformPrior | Convenience function to create a simple uniform prior distribution |
| DE | Differential-Evolution MCMC |
| DEzs | Differential-Evolution MCMC zs |
| DIC | Deviance information criterion |
| DREAM | DREAM |
| DREAMzs | DREAMzs |
| gelmanDiagnostics | Runs Gelman Diagnotics over an BayesianOutput |
| generateParallelExecuter | Factory to generate a parallel executer of an existing function |
| generateTestDensityMultiNormal | Multivariate normal likelihood |
| getCredibleIntervals | Calculate confidence region from an MCMC or similar sample |
| getDharmaResiduals | Creates a DHARMa object |
| getPossibleSamplerTypes | Returns possible sampler types |
| getPredictiveDistribution | Calculates predictive distribution based on the parameters |
| getPredictiveIntervals | Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample |
| getSample | Extracts the sample from a bayesianOutput |
| getSample.data.frame | Extracts the sample from a bayesianOutput |
| getSample.double | Extracts the sample from a bayesianOutput |
| getSample.integer | Extracts the sample from a bayesianOutput |
| getSample.list | Extracts the sample from a bayesianOutput |
| getSample.matrix | Extracts the sample from a bayesianOutput |
| getSample.MCMC | Extracts the sample from a bayesianOutput |
| getSample.mcmc | Extracts the sample from a bayesianOutput |
| getSample.mcmc.list | Extracts the sample from a bayesianOutput |
| getSample.MCMC_refClass | Extracts the sample from a bayesianOutput |
| getVolume | Calculate posterior volume |
| GOF | Standard GOF metrics Startvalues for sampling with nrChains > 1 : if you want to provide different start values for the different chains, provide a list |
| likelihoodAR1 | AR1 type likelihood function |
| likelihoodIidNormal | Normal / Gaussian Likelihood function |
| MAP | calculates the Maxiumum APosteriori value (MAP) |
| marginalLikelihood | Calcluated the marginal likelihood from a set of MCMC samples |
| marginalPlot | Plot MCMC marginals |
| mergeChains | Merge Chains |
| Metropolis | Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering |
| plotDiagnostic | Diagnostic Plot |
| plotSensitivity | Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range. |
| plotTimeSeries | Plots a time series, with the option to include confidence and prediction band |
| plotTimeSeriesResiduals | Plots residuals of a time series |
| plotTimeSeriesResults | Creates a time series plot typical for an MCMC / SMC fit |
| runMCMC | Main wrapper function to start MCMCs, particle MCMCs and SMCs |
| smcSampler | SMC sampler |
| stopParallel | Function to close cluster in BayesianSetup |
| testDensityBanana | Banana-shaped density function |
| testDensityInfinity | Test function infinity ragged |
| testDensityMultiNormal | 3d Mutivariate Normal likelihood |
| testDensityNormal | Normal likelihood |
| testLinearModel | Fake model, returns a ax + b linear response to 2-param vector |
| tracePlot | Trace plot for MCMC class |
| Twalk | T-walk MCMC |
| updateProposalGenerator | To update settings of an existing proposal genenerator |
| VSEM | Very simple ecosystem model |
| vsemC | C version of the VSEM model |
| VSEMcreateLikelihood | Create an example dataset, and from that a likelihood or posterior for the VSEM model |
| VSEMcreatePAR | Create a random radiation (PAR) time series |
| VSEMgetDefaults | returns the default values for the VSEM |
| WAIC | calculates the WAIC |