| MLmetrics-package | MLmetrics: Machine Learning Evaluation Metrics |
| Accuracy | Accuracy |
| Area_Under_Curve | Calculate the Area Under the Curve |
| AUC | Area Under the Receiver Operating Characteristic Curve (ROC AUC) |
| ConfusionMatrix | Confusion Matrix |
| F1_Score | F1 Score |
| FBeta_Score | F-Beta Score |
| GainAUC | Area Under the Gain Chart |
| Gini | Gini Coefficient |
| KS_Stat | Kolmogorov-Smirnov Statistic |
| LiftAUC | Area Under the Lift Chart |
| LogLoss | Log loss / Cross-Entropy Loss |
| MAE | Mean Absolute Error Loss |
| MAPE | Mean Absolute Percentage Error Loss |
| MedianAE | Median Absolute Error Loss |
| MedianAPE | Median Absolute Percentage Error Loss |
| MLmetrics | MLmetrics: Machine Learning Evaluation Metrics |
| MSE | Mean Square Error Loss |
| MultiLogLoss | Multi Class Log Loss |
| NormalizedGini | Normalized Gini Coefficient |
| Poisson_LogLoss | Poisson Log loss |
| PRAUC | Area Under the Precision-Recall Curve (PR AUC) |
| Precision | Precision |
| R2_Score | R-Squared (Coefficient of Determination) Regression Score |
| RAE | Relative Absolute Error Loss |
| Recall | Recall |
| RMSE | Root Mean Square Error Loss |
| RMSLE | Root Mean Squared Logarithmic Error Loss |
| RMSPE | Root Mean Square Percentage Error Loss |
| RRSE | Root Relative Squared Error Loss |
| Sensitivity | Sensitivity |
| Specificity | Specificity |
| ZeroOneLoss | Normalized Zero-One Loss (Classification Error Loss) |